

Why and How of Reproducible Builds

Seth Schoen
Electronic Frontier Foundation

Mike Perry
The Tor Project

I want to believe

• Whenever we use binary packages, our basis for
believing that we've been given access to the
source code is that someone said so

• If we compile the purported source code, we
expect to get something that superficially
behaves like the binaries

• Not logical or forensic proof!

• I'll argue it's inadequate in general

“But I'm the developer!”

• “I know what's in the binary because I compiled
it myself!”

• “I'm an upstanding, careful, and responsible
individual!”

• “Why should I have to worry about hypothetical
risks about the contents of my binaries?”

Build discrepancies

• Discrepancies between the binary package and
its asserted source code could occur if software
distributor is
– careless

– confused

– crooked

– coerced

– compromised

• {,un}wi{ll,tt}ingly

Severity

I will try to convince you that this problem is:
– extremely hard to detect

– extremely possible

– extremely harmful, if done maliciously

Tampering with binaries

• Trivial, if victim won't do any forensics

• Can be done by ISP or wifi router if the binaries
are transferred over FTP or HTTP and aren't
digitally signed with a key that the client already
knows
– Compare Brewer, Gauthier, Goldberg, and Wagner's

NFS attack (“Basic Flaws”, 1995)

• We can create major vulnerabilities with very
very small changes to binaries

Fencepost error

• Six fence posts; five fence beams

• For any sequence of n objects, there are (n-1)
transitions from one object to the next

Security consequences

• Often, memory corruption in low-level
languages due to executing a loop one too few
or one too many times
– Overwriting data on stack or heap (the array element

past the end of the array)

– Can result in malicious code execution

A fencepost error in C

OpenSSH 3.0.2 (CVE-2002-0083) – exploitable security
bug (privilege escalation: user can get root)

 {

 Channel *c;

- if (id < 0 || id > channels_alloc) {

+ if (id < 0 || id >= channels_alloc) {

 log("channel_lookup: %d: bad id", id);

 return NULL;

 }

Fencepost error in the binary

• What's the difference between if (a > b) and if (a >= b)
in x86 assembly?

• JLE → JL assembly instruction

• Opcode 0x7E → 0x7C

• Not just a single byte change: a single bit change
(01111110 → 01111100)

• Other corresponding opcode pairs (like those for >=
and >) also differ by just a single bit (JGE=0x7D,
JG=0x7F)

Result of fixing the bug (asm)

cmpl $0x0,0x8(%ebp)

js 16

mov 0x4,%eax

cmp %eax,0x8(%ebp)

jle 30

mov 0x8(%ebp),%eax

mov %eax,0x4(%esp)

movl $0x4c,(%esp)

call 25

cmpl $0x0,0x8(%ebp)

js 16

mov 0x4,%eax

cmp %eax,0x8(%ebp)

jl 30

mov 0x8(%ebp),%eax

mov %eax,0x4(%esp)

movl $0x4c,(%esp)

call 25

Result of fixing the bug (asm)

cmpl $0x0,0x8(%ebp)

js 16

mov 0x4,%eax

cmp %eax,0x8(%ebp)

jle 30

mov 0x8(%ebp),%eax

mov %eax,0x4(%esp)

movl $0x4c,(%esp)

call 25

cmpl $0x0,0x8(%ebp)

js 16

mov 0x4,%eax

cmp %eax,0x8(%ebp)

jl 30

mov 0x8(%ebp),%eax

mov %eax,0x4(%esp)

movl $0x4c,(%esp)

call 25

Result of fixing the bug (hex)

55 89 e5 83 ec
28 83 7d 08 00
78 0a a1 04 00
00 00 39 45 08
7e 1a 8b 45 08
89 44 24 04 c7
04 24 4c 00 00
00 e8 fc ff ff
ff b8 00 00 00
00 eb 35

Overall file size:

55 89 e5 83 ec
28 83 7d 08 00
78 0a a1 04 00
00 00 39 45 08
7c 1a 8b 45 08
89 44 24 04 c7
04 24 4c 00 00
00 e8 fc ff ff
ff b8 00 00 00
00 eb 35

Approx. 500 kB

Result of fixing the bug (hex)

55 89 e5 83 ec
28 83 7d 08 00
78 0a a1 04 00
00 00 39 45 08
7e 1a 8b 45 08
89 44 24 04 c7
04 24 4c 00 00
00 e8 fc ff ff
ff b8 00 00 00
00 eb 35

Overall file size:

55 89 e5 83 ec
28 83 7d 08 00
78 0a a1 04 00
00 00 39 45 08
7c 1a 8b 45 08
89 44 24 04 c7
04 24 4c 00 00
00 e8 fc ff ff
ff b8 00 00 00
00 eb 35

Approx. 500 kB

Infected build platform

• I created a Linux kernel module that alters attempts by
the compiler (only the compiler) to read C source
code

• Source files as seen by the compiler get malicious code
inserted before first line

• For all other programs (cat, Emacs, sha1sum), source is
totally unmodified

• No files on disk are modified, including the kernel,
compiler, and source files

Unpleasant thoughts

• We don't like to think about software developers and
projects as targets; we think of our software
development as a fundamentally benign activity

• Attackers target a project's users through its
developers
– See Dullien “Offensive work and addiction” (2014)

• Known successful attacks against infrastructure used
by Linux (2003), FreeBSD (2013)

Are these attacks realistic?

“[E]ven costs several hundred times larger
than those shown here would be considered
nominal to a foreign agent.”
– Karger and Schell (1974), on compiler backdoors

“Current popular software development
practices simply cannot survive targeted attacks
of the scale and scope that we are seeing today.”
– Perry (2013), on attacks against software developers

and infrastructure

Bitcoin's motivation

• Malicious modifications to Bitcoin client binaries
could result in irrevocable, relatively anonymous
theft of large amounts of money

• Individual developers could be blamed for such
modifications; users might not believe that a
developer's machine was hacked

• Reproducible builds protect developers

Software epistemology

• Without certainty about the integrity of build
infrastructure, people publishing binaries can't
have certainty about the correctness of those
binaries

• As targets of attack, we can't achieve this
certainty in isolation

• People publishing binaries need other people to
check their work!

Build idempotence

• Compile the same program twice on different
computers → get different binaries (often!)

• Compile the same program twice on the same
computer → get different binaries (often!)

• Why? Why isn't compilation a deterministic
function?

Deterministic build vision

• Anyone in the world should be able to compile the
source code and get a byte-for-byte identical file

• Confirming provenance of binaries

• Infrastructure should be created to independently
check popular binaries
– This is a benefit to those releasing the binaries: they can

find out if something bad happens

Deterministic build reality

• Only two projects currently practice this
– Bitcoin

– Tor Browser

• But, more are coming!
– Red Hat

– Debian (60% of packages already!)

– F-Droid

– Mozilla

Tor Browser overview

• Firefox ESR-based “branch”

• Third party tracking and fingerprinting patches

• Tor client and Tor configuration Firefox addon

• Pluggable Transports for traffic obfuscation

• NoScript, HTTPS-Everywhere

Tor Browser build system

• Uses Gitian (from Bitcoin)

• Full package set signed by multiple builders
– Incremental updates (as unsigned MARs) too!

• Supports anonymous independent verification

• Does not require dedicated build hardware

• Does not require non-free (as in beer) software
– MacOS and Windows are cross-compiled from Linux
– Linux tools are free as in freedom

Major toolchain components

• Windows:
– MinGW-W64 (by commit hash)
– wine+py2exe
– nsis

• Mac:
– Toolchain4 and Crosstools-ng forks by Ray Donnelly
– mkisofs and libdmg-hfsplus (patched)

• Linux:
– GCC 4.9.1, binutils 2.24

Gitian overview

• Developed by Bitcoin community

• Wraps Ubuntu virt tools (Qemu-KVM and LXC)

• Compilation stages are YAML "descriptors" that:
– Specify an Ubuntu release and arch
– Specify a package list
– Specify a list of git repos
– Specify additional "input" files
– Provide in-line bash script that creates "output" files
– Can be chained (with some glue code)

Issues Gitian solves

• Normalizes build environment
– Hostname, username, build paths, tool versions,

kernel/uname, time

• Does not require dedicated build hardware
– Encourages community involvement in verification

• Authenticates git-based inputs
• Integrates with 'faketime' for spoofing timestamps

Gitian limitations

• Ubuntu Only: Cross compilation is required

• Needs non-git input authentication helpers

• Needs dependency and descriptor management glue

• No partial compilation state
– Base VM images are COW, and COW portion is destroyed
– faketime causes issues with dependency freshness checks
– Descriptor stages can be saved, but this gets error-prone

• Time consuming

• Kind of janky
– qemu-kvm process management issues
– Supports only one qemu-kvm or LXC slave at a time

Remaining reproducibility issues

• Filesystem and archive reordering
– os.walk()/os.listdir()/readdir(), zip, tar
– LC_ALL and locale sorting order

• Unitialized memory in toolchain/archivers
– binutils for mingw-w64, libdmg-hfsplus
– GNU linker: debug BuildID (32bit overflow for SHA1?)

• Timezone and umask

• Deliberately generated entropy (FIPS-140, sigs)

• Authenticode and Gatekeeper signatures

• LXC mode still often leaks:
– Kernel/uname, CPU (libgmp), hostname, memory???

Firefox-specific issues

• about:buildconfig (improved, but still has hostname)

• DLL timestamping using unwrapped time calls

• MAR update signatures

• Profile-Guided Optimization
– Publish these profiles as official build input
– Tools to analyze PGO for malicious manipulation?

• EME Host Process

Dependency authentication

• Protect builders from discovery+targeted input attack
– Use Tor by default for fetching dependencies
– Authenticate all dependencies before use/compilation

• Wrapper scripts for input fetching
– Verify signatures where possible
– Many things have weak/no signatures

• OpenSSL, GCC, faketime, OSX SDK, Go+python packages
• For these, use SHA256 based on multi-perspective download

Future work

• Remove strict Ubuntu dependency
– Ideally Debian and Ubuntu could be used to produce the

same result

• Trusting trust?
– Diverse Double Compilation for entire build environment
– Leverage cross compilation from multiple architectures,

distributions

• Multi-sig updates? Consensus updates?
– Tor Consensus can list update info
– Bitcoin blockchain
– Certificate Transparency log

Thanks

Reproducibility section of Tor Browser design document:
https://www.torproject.org/projects/torbrowser/design/#BuildSecurity

Contact us:

Seth Schoen <schoen@eff.org>

FD9A 6AA2 8193 A9F0 3D4B F4AD C11B 36DC 9C7D D150

Mike perry <mikeperry@torproject.org>

C963 C21D 6356 4E2B 10BB 335B 2984 6B3C 6836 86CC

Image credits: Fence - flickr user hotcactuspepper CC-BY-SA

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 19
	Slide 20
	Slide 21
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

