Line data Source code
1 : /* Copyright (c) 2001 Matej Pfajfar.
2 : * Copyright (c) 2001-2004, Roger Dingledine.
3 : * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
4 : * Copyright (c) 2007-2021, The Tor Project, Inc. */
5 : /* See LICENSE for licensing information */
6 :
7 : /**
8 : * \file entrynodes.c
9 : * \brief Code to manage our fixed first nodes for various functions.
10 : *
11 : * Entry nodes can be guards (for general use) or bridges (for censorship
12 : * circumvention).
13 : *
14 : * In general, we use entry guards to prevent traffic-sampling attacks:
15 : * if we chose every circuit independently, an adversary controlling
16 : * some fraction of paths on the network would observe a sample of every
17 : * user's traffic. Using guards gives users a chance of not being
18 : * profiled.
19 : *
20 : * The current entry guard selection code is designed to try to avoid
21 : * _ever_ trying every guard on the network, to try to stick to guards
22 : * that we've used before, to handle hostile/broken networks, and
23 : * to behave sanely when the network goes up and down.
24 : *
25 : * Our algorithm works as follows: First, we maintain a SAMPLE of guards
26 : * we've seen in the networkstatus consensus. We maintain this sample
27 : * over time, and store it persistently; it is chosen without reference
28 : * to our configuration or firewall rules. Guards remain in the sample
29 : * as they enter and leave the consensus. We expand this sample as
30 : * needed, up to a maximum size.
31 : *
32 : * As a subset of the sample, we maintain a FILTERED SET of the guards
33 : * that we would be willing to use if we could connect to them. The
34 : * filter removes all the guards that we're excluding because they're
35 : * bridges (or not bridges), because we have restrictive firewall rules,
36 : * because of ExcludeNodes, because we of path bias restrictions,
37 : * because they're absent from the network at present, and so on.
38 : *
39 : * As a subset of the filtered set, we keep a REACHABLE FILTERED SET
40 : * (also called a "usable filtered set") of those guards that we call
41 : * "reachable" or "maybe reachable". A guard is reachable if we've
42 : * connected to it more recently than we've failed. A guard is "maybe
43 : * reachable" if we have never tried to connect to it, or if we
44 : * failed to connect to it so long ago that we no longer think our
45 : * failure means it's down.
46 : *
47 : * As a persistent ordered list whose elements are taken from the
48 : * sampled set, we track a CONFIRMED GUARDS LIST. A guard becomes
49 : * confirmed when we successfully build a circuit through it, and decide
50 : * to use that circuit.
51 : *
52 : * And as a final group, we have an ordered list of PRIMARY GUARDS,
53 : * whose elements are taken from the filtered set. We prefer
54 : * confirmed guards to non-confirmed guards for this list, and place
55 : * other restrictions on it. The primary guards are the ones that we
56 : * connect to "when nothing is wrong" -- circuits through them can be used
57 : * immediately.
58 : *
59 : * To build circuits, we take a primary guard if possible -- or a
60 : * reachable filtered confirmed guard if no primary guard is possible --
61 : * or the first (by sampled order) filtered guard otherwise. If the guard is
62 : * primary, we can use the circuit immediately on success. Otherwise,
63 : * the guard is now "pending" -- we won't use its circuit unless all
64 : * of the circuits we're trying to build through better guards have
65 : * definitely failed.
66 : *
67 : * While we're building circuits, we track a little "guard state" for
68 : * each circuit. We use this to keep track of whether the circuit is
69 : * one that we can use as soon as it's done, or whether it's one that
70 : * we should keep around to see if we can do better. In the latter case,
71 : * a periodic call to entry_guards_upgrade_waiting_circuits() will
72 : * eventually upgrade it.
73 : **/
74 : /* DOCDOC -- expand this.
75 : *
76 : * Information invariants:
77 : *
78 : * [x] whenever a guard becomes unreachable, clear its usable_filtered flag.
79 : *
80 : * [x] Whenever a guard becomes reachable or maybe-reachable, if its filtered
81 : * flag is set, set its usable_filtered flag.
82 : *
83 : * [x] Whenever we get a new consensus, call update_from_consensus(). (LATER.)
84 : *
85 : * [x] Whenever the configuration changes in a relevant way, update the
86 : * filtered/usable flags. (LATER.)
87 : *
88 : * [x] Whenever we add a guard to the sample, make sure its filtered/usable
89 : * flags are set as possible.
90 : *
91 : * [x] Whenever we remove a guard from the sample, remove it from the primary
92 : * and confirmed lists.
93 : *
94 : * [x] When we make a guard confirmed, update the primary list, and sort them
95 : * by sampled order.
96 : *
97 : * [x] When we make a guard filtered or unfiltered, update the primary list.
98 : *
99 : * [x] When we are about to pick a guard, make sure that the primary list is
100 : * full.
101 : *
102 : * [x] When we update the confirmed list, or when we re-build the primary list
103 : * and detect a change, we sort those lists by sampled_idx
104 : *
105 : * [x] Before calling first_reachable_filtered_entry_guard(), make sure
106 : * that the filtered, primary, and confirmed flags are up-to-date.
107 : *
108 : * [x] Call entry_guard_consider_retry every time we are about to check
109 : * is_usable_filtered or is_reachable, and every time we set
110 : * is_filtered to 1.
111 : *
112 : * [x] Call entry_guards_changed_for_guard_selection() whenever we update
113 : * a persistent field.
114 : */
115 :
116 : #define ENTRYNODES_PRIVATE
117 :
118 : #include "core/or/or.h"
119 : #include "app/config/config.h"
120 : #include "lib/confmgt/confmgt.h"
121 : #include "app/config/statefile.h"
122 : #include "core/mainloop/connection.h"
123 : #include "core/mainloop/mainloop.h"
124 : #include "core/or/channel.h"
125 : #include "core/or/circuitbuild.h"
126 : #include "core/or/circuitlist.h"
127 : #include "core/or/circuitstats.h"
128 : #include "core/or/circuituse.h"
129 : #include "core/or/policies.h"
130 : #include "feature/client/bridges.h"
131 : #include "feature/client/circpathbias.h"
132 : #include "feature/client/entrynodes.h"
133 : #include "feature/client/transports.h"
134 : #include "feature/control/control_events.h"
135 : #include "feature/dircommon/directory.h"
136 : #include "feature/nodelist/describe.h"
137 : #include "feature/nodelist/microdesc.h"
138 : #include "feature/nodelist/networkstatus.h"
139 : #include "feature/nodelist/nickname.h"
140 : #include "feature/nodelist/nodelist.h"
141 : #include "feature/nodelist/node_select.h"
142 : #include "feature/nodelist/routerset.h"
143 : #include "feature/relay/router.h"
144 : #include "lib/crypt_ops/crypto_rand.h"
145 : #include "lib/crypt_ops/digestset.h"
146 : #include "lib/encoding/confline.h"
147 : #include "lib/math/fp.h"
148 :
149 : #include "feature/nodelist/node_st.h"
150 : #include "core/or/origin_circuit_st.h"
151 : #include "app/config/or_state_st.h"
152 :
153 : /** A list of existing guard selection contexts. */
154 : static smartlist_t *guard_contexts = NULL;
155 : /** The currently enabled guard selection context. */
156 : static guard_selection_t *curr_guard_context = NULL;
157 :
158 : /** A value of 1 means that at least one context has changed,
159 : * and those changes need to be flushed to disk. */
160 : static int entry_guards_dirty = 0;
161 :
162 : static void entry_guard_set_filtered_flags(const or_options_t *options,
163 : guard_selection_t *gs,
164 : entry_guard_t *guard);
165 : static void pathbias_check_use_success_count(entry_guard_t *guard);
166 : static void pathbias_check_close_success_count(entry_guard_t *guard);
167 : static int node_is_possible_guard(const node_t *node);
168 : static int node_passes_guard_filter(const or_options_t *options,
169 : const node_t *node);
170 : static entry_guard_t *entry_guard_add_to_sample_impl(guard_selection_t *gs,
171 : const uint8_t *rsa_id_digest,
172 : const char *nickname,
173 : const tor_addr_port_t *bridge_addrport);
174 : static entry_guard_t *get_sampled_guard_by_bridge_addr(guard_selection_t *gs,
175 : const tor_addr_port_t *addrport);
176 : static int entry_guard_obeys_restriction(const entry_guard_t *guard,
177 : const entry_guard_restriction_t *rst);
178 : static int compare_guards_by_sampled_idx(const void **a_, const void **b_);
179 :
180 : /** Return 0 if we should apply guardfraction information found in the
181 : * consensus. A specific consensus can be specified with the
182 : * <b>ns</b> argument, if NULL the most recent one will be picked.*/
183 : int
184 9 : should_apply_guardfraction(const networkstatus_t *ns)
185 : {
186 : /* We need to check the corresponding torrc option and the consensus
187 : * parameter if we need to. */
188 9 : const or_options_t *options = get_options();
189 :
190 : /* If UseGuardFraction is 'auto' then check the same-named consensus
191 : * parameter. If the consensus parameter is not present, default to
192 : * "off". */
193 9 : if (options->UseGuardFraction == -1) {
194 3 : return networkstatus_get_param(ns, "UseGuardFraction",
195 : 0, /* default to "off" */
196 : 0, 1);
197 : }
198 :
199 : return options->UseGuardFraction;
200 : }
201 :
202 : /** Return true iff we know a preferred descriptor for <b>guard</b> */
203 : static int
204 1512 : guard_has_descriptor(const entry_guard_t *guard)
205 : {
206 1512 : const node_t *node = node_get_by_id(guard->identity);
207 1512 : if (!node)
208 : return 0;
209 1509 : return node_has_preferred_descriptor(node, 1);
210 : }
211 :
212 : /**
213 : * Try to determine the correct type for a selection named "name",
214 : * if <b>type</b> is GS_TYPE_INFER.
215 : */
216 : STATIC guard_selection_type_t
217 116 : guard_selection_infer_type(guard_selection_type_t type,
218 : const char *name)
219 : {
220 116 : if (type == GS_TYPE_INFER) {
221 7 : if (!strcmp(name, "bridges"))
222 : type = GS_TYPE_BRIDGE;
223 5 : else if (!strcmp(name, "restricted"))
224 : type = GS_TYPE_RESTRICTED;
225 : else
226 5 : type = GS_TYPE_NORMAL;
227 : }
228 116 : return type;
229 : }
230 :
231 : /**
232 : * Allocate and return a new guard_selection_t, with the name <b>name</b>.
233 : */
234 : STATIC guard_selection_t *
235 116 : guard_selection_new(const char *name,
236 : guard_selection_type_t type)
237 : {
238 116 : guard_selection_t *gs;
239 :
240 116 : type = guard_selection_infer_type(type, name);
241 :
242 116 : gs = tor_malloc_zero(sizeof(*gs));
243 116 : gs->name = tor_strdup(name);
244 116 : gs->type = type;
245 116 : gs->sampled_entry_guards = smartlist_new();
246 116 : gs->confirmed_entry_guards = smartlist_new();
247 116 : gs->primary_entry_guards = smartlist_new();
248 :
249 116 : return gs;
250 : }
251 :
252 : /**
253 : * Return the guard selection called <b>name</b>. If there is none, and
254 : * <b>create_if_absent</b> is true, then create and return it. If there
255 : * is none, and <b>create_if_absent</b> is false, then return NULL.
256 : */
257 : STATIC guard_selection_t *
258 63 : get_guard_selection_by_name(const char *name,
259 : guard_selection_type_t type,
260 : int create_if_absent)
261 : {
262 63 : if (!guard_contexts) {
263 4 : guard_contexts = smartlist_new();
264 : }
265 87 : SMARTLIST_FOREACH_BEGIN(guard_contexts, guard_selection_t *, gs) {
266 50 : if (!strcmp(gs->name, name))
267 26 : return gs;
268 24 : } SMARTLIST_FOREACH_END(gs);
269 :
270 37 : if (! create_if_absent)
271 : return NULL;
272 :
273 32 : log_debug(LD_GUARD, "Creating a guard selection called %s", name);
274 32 : guard_selection_t *new_selection = guard_selection_new(name, type);
275 32 : smartlist_add(guard_contexts, new_selection);
276 :
277 32 : return new_selection;
278 : }
279 :
280 : /**
281 : * Allocate the first guard context that we're planning to use,
282 : * and make it the current context.
283 : */
284 : static void
285 23 : create_initial_guard_context(void)
286 : {
287 23 : tor_assert(! curr_guard_context);
288 23 : if (!guard_contexts) {
289 16 : guard_contexts = smartlist_new();
290 : }
291 23 : guard_selection_type_t type = GS_TYPE_INFER;
292 23 : const char *name = choose_guard_selection(
293 : get_options(),
294 23 : networkstatus_get_reasonably_live_consensus(
295 : approx_time(),
296 : usable_consensus_flavor()),
297 : NULL,
298 : &type);
299 23 : tor_assert(name); // "name" can only be NULL if we had an old name.
300 23 : tor_assert(type != GS_TYPE_INFER);
301 23 : log_notice(LD_GUARD, "Starting with guard context \"%s\"", name);
302 23 : curr_guard_context = get_guard_selection_by_name(name, type, 1);
303 23 : }
304 :
305 : /** Get current default guard_selection_t, creating it if necessary */
306 : guard_selection_t *
307 245 : get_guard_selection_info(void)
308 : {
309 245 : if (!curr_guard_context) {
310 22 : create_initial_guard_context();
311 : }
312 :
313 245 : return curr_guard_context;
314 : }
315 :
316 : /** Return a statically allocated human-readable description of <b>guard</b>
317 : */
318 : const char *
319 3813 : entry_guard_describe(const entry_guard_t *guard)
320 : {
321 3813 : static char buf[256];
322 3813 : tor_snprintf(buf, sizeof(buf),
323 : "%s ($%s)",
324 3813 : strlen(guard->nickname) ? guard->nickname : "[bridge]",
325 3813 : hex_str(guard->identity, DIGEST_LEN));
326 3813 : return buf;
327 : }
328 :
329 : /** Return <b>guard</b>'s 20-byte RSA identity digest */
330 : const char *
331 0 : entry_guard_get_rsa_id_digest(const entry_guard_t *guard)
332 : {
333 0 : return guard->identity;
334 : }
335 :
336 : /** Return the pathbias state associated with <b>guard</b>. */
337 : guard_pathbias_t *
338 29 : entry_guard_get_pathbias_state(entry_guard_t *guard)
339 : {
340 29 : return &guard->pb;
341 : }
342 :
343 2702 : HANDLE_IMPL(entry_guard, entry_guard_t, ATTR_UNUSED STATIC)
344 :
345 : /** Return an interval between 'now' and 'max_backdate' seconds in the past,
346 : * chosen uniformly at random. We use this before recording persistent
347 : * dates, so that we aren't leaking exactly when we recorded it.
348 : */
349 4841 : MOCK_IMPL(STATIC time_t,
350 : randomize_time,(time_t now, time_t max_backdate))
351 : {
352 4841 : tor_assert(max_backdate > 0);
353 :
354 4841 : time_t earliest = now - max_backdate;
355 4841 : time_t latest = now;
356 4841 : if (earliest <= 0)
357 : earliest = 1;
358 4841 : if (latest <= earliest)
359 1000 : latest = earliest + 1;
360 :
361 4841 : return crypto_rand_time_range(earliest, latest);
362 : }
363 :
364 : /**
365 : * @name parameters for networkstatus algorithm
366 : *
367 : * These parameters are taken from the consensus; some are overrideable in
368 : * the torrc.
369 : */
370 : /**@{*/
371 : /**
372 : * We never let our sampled guard set grow larger than this fraction
373 : * of the guards on the network.
374 : */
375 : STATIC double
376 155 : get_max_sample_threshold(void)
377 : {
378 155 : int32_t pct =
379 155 : networkstatus_get_param(NULL, "guard-max-sample-threshold-percent",
380 : DFLT_MAX_SAMPLE_THRESHOLD_PERCENT,
381 : 1, 100);
382 155 : return pct / 100.0;
383 : }
384 : /**
385 : * We never let our sampled guard set grow larger than this number.
386 : */
387 : STATIC int
388 193 : get_max_sample_size_absolute(void)
389 : {
390 193 : return (int) networkstatus_get_param(NULL, "guard-max-sample-size",
391 : DFLT_MAX_SAMPLE_SIZE,
392 : 1, INT32_MAX);
393 : }
394 : /**
395 : * We always try to make our sample contain at least this many guards.
396 : */
397 : STATIC int
398 604 : get_min_filtered_sample_size(void)
399 : {
400 604 : return networkstatus_get_param(NULL, "guard-min-filtered-sample-size",
401 : DFLT_MIN_FILTERED_SAMPLE_SIZE,
402 : 1, INT32_MAX);
403 : }
404 : /**
405 : * If a guard is unlisted for this many days in a row, we remove it.
406 : */
407 : STATIC int
408 39 : get_remove_unlisted_guards_after_days(void)
409 : {
410 39 : return networkstatus_get_param(NULL,
411 : "guard-remove-unlisted-guards-after-days",
412 : DFLT_REMOVE_UNLISTED_GUARDS_AFTER_DAYS,
413 : 1, 365*10);
414 : }
415 :
416 : /**
417 : * Return number of seconds that will make a guard no longer eligible
418 : * for selection if unlisted for this long.
419 : */
420 : static time_t
421 36 : get_remove_unlisted_guards_after_seconds(void)
422 : {
423 36 : return get_remove_unlisted_guards_after_days() * 24 * 60 * 60;
424 : }
425 :
426 : /**
427 : * We remove unconfirmed guards from the sample after this many days,
428 : * regardless of whether they are listed or unlisted.
429 : */
430 : STATIC int
431 2114 : get_guard_lifetime(void)
432 : {
433 2114 : if (get_options()->GuardLifetime >= 86400)
434 0 : return get_options()->GuardLifetime;
435 2114 : int32_t days;
436 2114 : days = networkstatus_get_param(NULL,
437 : "guard-lifetime-days",
438 : DFLT_GUARD_LIFETIME_DAYS, 1, 365*10);
439 2114 : return days * 86400;
440 : }
441 : /**
442 : * We remove confirmed guards from the sample if they were sampled
443 : * GUARD_LIFETIME_DAYS ago and confirmed this many days ago.
444 : */
445 : STATIC int
446 21 : get_guard_confirmed_min_lifetime(void)
447 : {
448 21 : if (get_options()->GuardLifetime >= 86400)
449 0 : return get_options()->GuardLifetime;
450 21 : int32_t days;
451 21 : days = networkstatus_get_param(NULL, "guard-confirmed-min-lifetime-days",
452 : DFLT_GUARD_CONFIRMED_MIN_LIFETIME_DAYS,
453 : 1, 365*10);
454 21 : return days * 86400;
455 : }
456 : /**
457 : * How many guards do we try to keep on our primary guard list?
458 : */
459 : STATIC int
460 291 : get_n_primary_guards(void)
461 : {
462 : /* If the user has explicitly configured the number of primary guards, do
463 : * what the user wishes to do */
464 291 : const int configured_primaries = get_options()->NumPrimaryGuards;
465 291 : if (configured_primaries) {
466 : return configured_primaries;
467 : }
468 :
469 : /* otherwise check for consensus parameter and if that's not set either, just
470 : * use the default value. */
471 290 : return networkstatus_get_param(NULL,
472 : "guard-n-primary-guards",
473 : DFLT_N_PRIMARY_GUARDS, 1, INT32_MAX);
474 : }
475 : /**
476 : * Return the number of the live primary guards we should look at when
477 : * making a circuit.
478 : */
479 : STATIC int
480 262 : get_n_primary_guards_to_use(guard_usage_t usage)
481 : {
482 262 : int configured;
483 262 : const char *param_name;
484 262 : int param_default;
485 :
486 : /* If the user has explicitly configured the amount of guards, use
487 : that. Otherwise, fall back to the default value. */
488 262 : if (usage == GUARD_USAGE_DIRGUARD) {
489 4 : configured = get_options()->NumDirectoryGuards;
490 4 : param_name = "guard-n-primary-dir-guards-to-use";
491 4 : param_default = DFLT_N_PRIMARY_DIR_GUARDS_TO_USE;
492 : } else {
493 258 : configured = get_options()->NumEntryGuards;
494 258 : param_name = "guard-n-primary-guards-to-use";
495 258 : param_default = DFLT_N_PRIMARY_GUARDS_TO_USE;
496 : }
497 262 : if (configured >= 1) {
498 : return configured;
499 : }
500 262 : return networkstatus_get_param(NULL,
501 : param_name, param_default, 1, INT32_MAX);
502 : }
503 : /**
504 : * If we haven't successfully built or used a circuit in this long, then
505 : * consider that the internet is probably down.
506 : */
507 : STATIC int
508 42 : get_internet_likely_down_interval(void)
509 : {
510 42 : return networkstatus_get_param(NULL, "guard-internet-likely-down-interval",
511 : DFLT_INTERNET_LIKELY_DOWN_INTERVAL,
512 : 1, INT32_MAX);
513 : }
514 : /**
515 : * If we're trying to connect to a nonprimary guard for at least this
516 : * many seconds, and we haven't gotten the connection to work, we will treat
517 : * lower-priority guards as usable.
518 : */
519 : STATIC int
520 24 : get_nonprimary_guard_connect_timeout(void)
521 : {
522 24 : return networkstatus_get_param(NULL,
523 : "guard-nonprimary-guard-connect-timeout",
524 : DFLT_NONPRIMARY_GUARD_CONNECT_TIMEOUT,
525 : 1, INT32_MAX);
526 : }
527 : /**
528 : * If a circuit has been sitting around in 'waiting for better guard' state
529 : * for at least this long, we'll expire it.
530 : */
531 : STATIC int
532 3 : get_nonprimary_guard_idle_timeout(void)
533 : {
534 3 : return networkstatus_get_param(NULL,
535 : "guard-nonprimary-guard-idle-timeout",
536 : DFLT_NONPRIMARY_GUARD_IDLE_TIMEOUT,
537 : 1, INT32_MAX);
538 : }
539 : /**
540 : * If our configuration retains fewer than this fraction of guards from the
541 : * torrc, we are in a restricted setting.
542 : */
543 : STATIC double
544 66 : get_meaningful_restriction_threshold(void)
545 : {
546 66 : int32_t pct = networkstatus_get_param(NULL,
547 : "guard-meaningful-restriction-percent",
548 : DFLT_MEANINGFUL_RESTRICTION_PERCENT,
549 : 1, INT32_MAX);
550 66 : return pct / 100.0;
551 : }
552 : /**
553 : * If our configuration retains fewer than this fraction of guards from the
554 : * torrc, we are in an extremely restricted setting, and should warn.
555 : */
556 : STATIC double
557 22 : get_extreme_restriction_threshold(void)
558 : {
559 22 : int32_t pct = networkstatus_get_param(NULL,
560 : "guard-extreme-restriction-percent",
561 : DFLT_EXTREME_RESTRICTION_PERCENT,
562 : 1, INT32_MAX);
563 22 : return pct / 100.0;
564 : }
565 :
566 : /* Mark <b>guard</b> as maybe reachable again. */
567 : static void
568 156 : mark_guard_maybe_reachable(entry_guard_t *guard)
569 : {
570 156 : if (guard->is_reachable != GUARD_REACHABLE_NO) {
571 : return;
572 : }
573 :
574 : /* Note that we do not clear failing_since: this guard is now only
575 : * _maybe-reachable_. */
576 36 : guard->is_reachable = GUARD_REACHABLE_MAYBE;
577 36 : if (guard->is_filtered_guard)
578 36 : guard->is_usable_filtered_guard = 1;
579 : }
580 :
581 : /**
582 : * Called when the network comes up after having seemed to be down for
583 : * a while: Mark the primary guards as maybe-reachable so that we'll
584 : * try them again.
585 : */
586 : STATIC void
587 9 : mark_primary_guards_maybe_reachable(guard_selection_t *gs)
588 : {
589 9 : tor_assert(gs);
590 :
591 9 : if (!gs->primary_guards_up_to_date)
592 0 : entry_guards_update_primary(gs);
593 :
594 36 : SMARTLIST_FOREACH_BEGIN(gs->primary_entry_guards, entry_guard_t *, guard) {
595 27 : mark_guard_maybe_reachable(guard);
596 27 : } SMARTLIST_FOREACH_END(guard);
597 9 : }
598 :
599 : /* Called when we exhaust all guards in our sampled set: Marks all guards as
600 : maybe-reachable so that we 'll try them again. */
601 : static void
602 6 : mark_all_guards_maybe_reachable(guard_selection_t *gs)
603 : {
604 6 : tor_assert(gs);
605 :
606 135 : SMARTLIST_FOREACH_BEGIN(gs->sampled_entry_guards, entry_guard_t *, guard) {
607 129 : mark_guard_maybe_reachable(guard);
608 129 : } SMARTLIST_FOREACH_END(guard);
609 6 : }
610 :
611 : /**@}*/
612 :
613 : /**
614 : * Given our options and our list of nodes, return the name of the
615 : * guard selection that we should use. Return NULL for "use the
616 : * same selection you were using before.
617 : */
618 : STATIC const char *
619 33 : choose_guard_selection(const or_options_t *options,
620 : const networkstatus_t *live_ns,
621 : const guard_selection_t *old_selection,
622 : guard_selection_type_t *type_out)
623 : {
624 33 : tor_assert(options);
625 33 : tor_assert(type_out);
626 :
627 33 : if (options->UseBridges) {
628 3 : *type_out = GS_TYPE_BRIDGE;
629 3 : return "bridges";
630 : }
631 :
632 30 : if (! live_ns) {
633 : /* without a networkstatus, we can't tell any more than that. */
634 8 : *type_out = GS_TYPE_NORMAL;
635 8 : return "default";
636 : }
637 :
638 22 : const smartlist_t *nodes = nodelist_get_list();
639 22 : int n_guards = 0, n_passing_filter = 0;
640 5717 : SMARTLIST_FOREACH_BEGIN(nodes, const node_t *, node) {
641 5695 : if (node_is_possible_guard(node)) {
642 2858 : ++n_guards;
643 2858 : if (node_passes_guard_filter(options, node)) {
644 2449 : ++n_passing_filter;
645 : }
646 : }
647 5695 : } SMARTLIST_FOREACH_END(node);
648 :
649 : /* We use separate 'high' and 'low' thresholds here to prevent flapping
650 : * back and forth */
651 44 : const int meaningful_threshold_high =
652 22 : (int)(n_guards * get_meaningful_restriction_threshold() * 1.05);
653 44 : const int meaningful_threshold_mid =
654 22 : (int)(n_guards * get_meaningful_restriction_threshold());
655 44 : const int meaningful_threshold_low =
656 22 : (int)(n_guards * get_meaningful_restriction_threshold() * .95);
657 44 : const int extreme_threshold =
658 22 : (int)(n_guards * get_extreme_restriction_threshold());
659 :
660 : /*
661 : If we have no previous selection, then we're "restricted" iff we are
662 : below the meaningful restriction threshold. That's easy enough.
663 :
664 : But if we _do_ have a previous selection, we make it a little
665 : "sticky": we only move from "restricted" to "default" when we find
666 : that we're above the threshold plus 5%, and we only move from
667 : "default" to "restricted" when we're below the threshold minus 5%.
668 : That should prevent us from flapping back and forth if we happen to
669 : be hovering very close to the default.
670 :
671 : The extreme threshold is for warning only.
672 : */
673 :
674 22 : static int have_warned_extreme_threshold = 0;
675 22 : if (n_guards &&
676 22 : n_passing_filter < extreme_threshold &&
677 3 : ! have_warned_extreme_threshold) {
678 3 : have_warned_extreme_threshold = 1;
679 3 : const double exclude_frac =
680 3 : (n_guards - n_passing_filter) / (double)n_guards;
681 3 : log_warn(LD_GUARD, "Your configuration excludes %d%% of all possible "
682 : "guards. That's likely to make you stand out from the "
683 : "rest of the world.", (int)(exclude_frac * 100));
684 : }
685 :
686 : /* Easy case: no previous selection. Just check if we are in restricted or
687 : normal guard selection. */
688 22 : if (old_selection == NULL) {
689 21 : if (n_passing_filter >= meaningful_threshold_mid) {
690 18 : *type_out = GS_TYPE_NORMAL;
691 18 : return "default";
692 : } else {
693 3 : *type_out = GS_TYPE_RESTRICTED;
694 3 : return "restricted";
695 : }
696 : }
697 :
698 : /* Trickier case: we do have a previous guard selection context. */
699 1 : tor_assert(old_selection);
700 :
701 : /* Use high and low thresholds to decide guard selection, and if we fall in
702 : the middle then keep the current guard selection context. */
703 1 : if (n_passing_filter >= meaningful_threshold_high) {
704 1 : *type_out = GS_TYPE_NORMAL;
705 1 : return "default";
706 0 : } else if (n_passing_filter < meaningful_threshold_low) {
707 0 : *type_out = GS_TYPE_RESTRICTED;
708 0 : return "restricted";
709 : } else {
710 : /* we are in the middle: maintain previous guard selection */
711 0 : *type_out = old_selection->type;
712 0 : return old_selection->name;
713 : }
714 : }
715 :
716 : /**
717 : * Check whether we should switch from our current guard selection to a
718 : * different one. If so, switch and return 1. Return 0 otherwise.
719 : *
720 : * On a 1 return, the caller should mark all currently live circuits unusable
721 : * for new streams, by calling circuit_mark_all_unused_circs() and
722 : * circuit_mark_all_dirty_circs_as_unusable().
723 : */
724 : int
725 2 : update_guard_selection_choice(const or_options_t *options)
726 : {
727 2 : if (!curr_guard_context) {
728 1 : create_initial_guard_context();
729 1 : return 1;
730 : }
731 :
732 1 : guard_selection_type_t type = GS_TYPE_INFER;
733 1 : const char *new_name = choose_guard_selection(
734 : options,
735 1 : networkstatus_get_reasonably_live_consensus(
736 : approx_time(),
737 : usable_consensus_flavor()),
738 : curr_guard_context,
739 : &type);
740 1 : tor_assert(new_name);
741 1 : tor_assert(type != GS_TYPE_INFER);
742 :
743 1 : const char *cur_name = curr_guard_context->name;
744 1 : if (! strcmp(cur_name, new_name)) {
745 1 : log_debug(LD_GUARD,
746 : "Staying with guard context \"%s\" (no change)", new_name);
747 1 : return 0; // No change
748 : }
749 :
750 0 : log_notice(LD_GUARD, "Switching to guard context \"%s\" (was using \"%s\")",
751 : new_name, cur_name);
752 0 : guard_selection_t *new_guard_context;
753 0 : new_guard_context = get_guard_selection_by_name(new_name, type, 1);
754 0 : tor_assert(new_guard_context);
755 0 : tor_assert(new_guard_context != curr_guard_context);
756 0 : curr_guard_context = new_guard_context;
757 :
758 0 : return 1;
759 : }
760 :
761 : /**
762 : * Return true iff <b>node</b> has all the flags needed for us to consider it
763 : * a possible guard when sampling guards.
764 : */
765 : static int
766 46695 : node_is_possible_guard(const node_t *node)
767 : {
768 : /* The "GUARDS" set is all nodes in the nodelist for which this predicate
769 : * holds. */
770 :
771 46695 : tor_assert(node);
772 46695 : return (node->is_possible_guard &&
773 : node->is_stable &&
774 46695 : node->is_fast &&
775 23133 : node->is_valid &&
776 69828 : node_is_dir(node) &&
777 23133 : !router_digest_is_me(node->identity));
778 : }
779 :
780 : /**
781 : * Return the sampled guard with the RSA identity digest <b>rsa_id</b>, or
782 : * NULL if we don't have one. */
783 : STATIC entry_guard_t *
784 1895 : get_sampled_guard_with_id(guard_selection_t *gs,
785 : const uint8_t *rsa_id)
786 : {
787 1895 : tor_assert(gs);
788 1895 : tor_assert(rsa_id);
789 21168 : SMARTLIST_FOREACH_BEGIN(gs->sampled_entry_guards, entry_guard_t *, guard) {
790 19285 : if (tor_memeq(guard->identity, rsa_id, DIGEST_LEN))
791 12 : return guard;
792 19273 : } SMARTLIST_FOREACH_END(guard);
793 : return NULL;
794 : }
795 :
796 : /** If <b>gs</b> contains a sampled entry guard matching <b>bridge</b>,
797 : * return that guard. Otherwise return NULL. */
798 : static entry_guard_t *
799 0 : get_sampled_guard_for_bridge(guard_selection_t *gs,
800 : const bridge_info_t *bridge)
801 : {
802 0 : const uint8_t *id = bridge_get_rsa_id_digest(bridge);
803 0 : const tor_addr_port_t *addrport = bridge_get_addr_port(bridge);
804 0 : entry_guard_t *guard;
805 0 : if (BUG(!addrport))
806 : return NULL; // LCOV_EXCL_LINE
807 0 : guard = get_sampled_guard_by_bridge_addr(gs, addrport);
808 0 : if (! guard || (id && tor_memneq(id, guard->identity, DIGEST_LEN)))
809 0 : return NULL;
810 : else
811 0 : return guard;
812 : }
813 :
814 : /** If we know a bridge_info_t matching <b>guard</b>, return that
815 : * bridge. Otherwise return NULL. */
816 : static bridge_info_t *
817 4 : get_bridge_info_for_guard(const entry_guard_t *guard)
818 : {
819 4 : const uint8_t *identity = NULL;
820 4 : if (! tor_digest_is_zero(guard->identity)) {
821 4 : identity = (const uint8_t *)guard->identity;
822 : }
823 4 : if (BUG(guard->bridge_addr == NULL))
824 0 : return NULL;
825 :
826 4 : return get_configured_bridge_by_exact_addr_port_digest(
827 4 : &guard->bridge_addr->addr,
828 4 : guard->bridge_addr->port,
829 : (const char*)identity);
830 : }
831 :
832 : /**
833 : * Return true iff we have a sampled guard with the RSA identity digest
834 : * <b>rsa_id</b>. */
835 : static inline int
836 1871 : have_sampled_guard_with_id(guard_selection_t *gs, const uint8_t *rsa_id)
837 : {
838 1871 : return get_sampled_guard_with_id(gs, rsa_id) != NULL;
839 : }
840 :
841 : /**
842 : * Allocate a new entry_guard_t object for <b>node</b>, add it to the
843 : * sampled entry guards in <b>gs</b>, and return it. <b>node</b> must
844 : * not currently be a sampled guard in <b>gs</b>.
845 : */
846 : STATIC entry_guard_t *
847 1871 : entry_guard_add_to_sample(guard_selection_t *gs,
848 : const node_t *node)
849 : {
850 1871 : log_info(LD_GUARD, "Adding %s to the entry guard sample set.",
851 : node_describe(node));
852 :
853 : /* make sure that the guard is not already sampled. */
854 1871 : if (BUG(have_sampled_guard_with_id(gs, (const uint8_t*)node->identity)))
855 : return NULL; // LCOV_EXCL_LINE
856 :
857 1871 : return entry_guard_add_to_sample_impl(gs,
858 : (const uint8_t*)node->identity,
859 : node_get_nickname(node),
860 : NULL);
861 : }
862 :
863 : /**
864 : * Backend: adds a new sampled guard to <b>gs</b>, with given identity,
865 : * nickname, and ORPort. rsa_id_digest and bridge_addrport are optional, but
866 : * we need one of them. nickname is optional. The caller is responsible for
867 : * maintaining the size limit of the SAMPLED_GUARDS set.
868 : */
869 : static entry_guard_t *
870 1871 : entry_guard_add_to_sample_impl(guard_selection_t *gs,
871 : const uint8_t *rsa_id_digest,
872 : const char *nickname,
873 : const tor_addr_port_t *bridge_addrport)
874 : {
875 1871 : const int GUARD_LIFETIME = get_guard_lifetime();
876 1871 : tor_assert(gs);
877 :
878 : // XXXX #20827 take ed25519 identity here too.
879 :
880 : /* Make sure we can actually identify the guard. */
881 1871 : if (BUG(!rsa_id_digest && !bridge_addrport))
882 : return NULL; // LCOV_EXCL_LINE
883 :
884 1871 : entry_guard_t *guard = tor_malloc_zero(sizeof(entry_guard_t));
885 :
886 : /* persistent fields */
887 1871 : guard->is_persistent = (rsa_id_digest != NULL);
888 1871 : guard->selection_name = tor_strdup(gs->name);
889 1871 : if (rsa_id_digest)
890 1871 : memcpy(guard->identity, rsa_id_digest, DIGEST_LEN);
891 1871 : if (nickname)
892 1871 : strlcpy(guard->nickname, nickname, sizeof(guard->nickname));
893 1871 : guard->sampled_on_date = randomize_time(approx_time(), GUARD_LIFETIME/10);
894 1871 : tor_free(guard->sampled_by_version);
895 1871 : guard->sampled_by_version = tor_strdup(VERSION);
896 1871 : guard->currently_listed = 1;
897 1871 : guard->sampled_idx = gs->next_sampled_idx++;
898 1871 : guard->confirmed_idx = -1;
899 :
900 : /* non-persistent fields */
901 1871 : guard->is_reachable = GUARD_REACHABLE_MAYBE;
902 1871 : if (bridge_addrport)
903 0 : guard->bridge_addr = tor_memdup(bridge_addrport, sizeof(*bridge_addrport));
904 :
905 1871 : smartlist_add(gs->sampled_entry_guards, guard);
906 1871 : guard->in_selection = gs;
907 1871 : entry_guard_set_filtered_flags(get_options(), gs, guard);
908 1871 : entry_guards_changed_for_guard_selection(gs);
909 :
910 : /* Just added this guard to the sampled set and hence it might be used as a
911 : * guard in the future: send GUARD NEW control event. */
912 1871 : control_event_guard(guard->nickname, guard->identity, "NEW");
913 :
914 1871 : return guard;
915 : }
916 :
917 : /**
918 : * Add an entry guard to the "bridges" guard selection sample, with
919 : * information taken from <b>bridge</b>. Return that entry guard.
920 : */
921 : static entry_guard_t *
922 0 : entry_guard_add_bridge_to_sample(guard_selection_t *gs,
923 : const bridge_info_t *bridge)
924 : {
925 0 : const uint8_t *id_digest = bridge_get_rsa_id_digest(bridge);
926 0 : const tor_addr_port_t *addrport = bridge_get_addr_port(bridge);
927 :
928 0 : tor_assert(addrport);
929 :
930 : /* make sure that the guard is not already sampled. */
931 0 : if (BUG(get_sampled_guard_for_bridge(gs, bridge)))
932 : return NULL; // LCOV_EXCL_LINE
933 :
934 0 : return entry_guard_add_to_sample_impl(gs, id_digest, NULL, addrport);
935 : }
936 :
937 : /**
938 : * Return the entry_guard_t in <b>gs</b> whose address is <b>addrport</b>,
939 : * or NULL if none exists.
940 : */
941 : static entry_guard_t *
942 0 : get_sampled_guard_by_bridge_addr(guard_selection_t *gs,
943 : const tor_addr_port_t *addrport)
944 : {
945 0 : if (! gs)
946 : return NULL;
947 0 : if (BUG(!addrport))
948 0 : return NULL;
949 0 : SMARTLIST_FOREACH_BEGIN(gs->sampled_entry_guards, entry_guard_t *, g) {
950 0 : if (g->bridge_addr && tor_addr_port_eq(addrport, g->bridge_addr))
951 0 : return g;
952 0 : } SMARTLIST_FOREACH_END(g);
953 : return NULL;
954 : }
955 :
956 : /** Update the guard subsystem's knowledge of the identity of the bridge
957 : * at <b>addrport</b>. Idempotent.
958 : */
959 : void
960 0 : entry_guard_learned_bridge_identity(const tor_addr_port_t *addrport,
961 : const uint8_t *rsa_id_digest)
962 : {
963 0 : guard_selection_t *gs = get_guard_selection_by_name("bridges",
964 : GS_TYPE_BRIDGE,
965 : 0);
966 0 : if (!gs)
967 : return;
968 :
969 0 : entry_guard_t *g = get_sampled_guard_by_bridge_addr(gs, addrport);
970 0 : if (!g)
971 : return;
972 :
973 0 : int make_persistent = 0;
974 :
975 0 : if (tor_digest_is_zero(g->identity)) {
976 0 : memcpy(g->identity, rsa_id_digest, DIGEST_LEN);
977 0 : make_persistent = 1;
978 0 : } else if (tor_memeq(g->identity, rsa_id_digest, DIGEST_LEN)) {
979 : /* Nothing to see here; we learned something we already knew. */
980 0 : if (BUG(! g->is_persistent))
981 0 : make_persistent = 1;
982 : } else {
983 0 : char old_id[HEX_DIGEST_LEN+1];
984 0 : base16_encode(old_id, sizeof(old_id), g->identity, sizeof(g->identity));
985 0 : log_warn(LD_BUG, "We 'learned' an identity %s for a bridge at %s:%d, but "
986 : "we already knew a different one (%s). Ignoring the new info as "
987 : "possibly bogus.",
988 : hex_str((const char *)rsa_id_digest, DIGEST_LEN),
989 : fmt_and_decorate_addr(&addrport->addr), addrport->port,
990 : old_id);
991 0 : return; // redundant, but let's be clear: we're not making this persistent.
992 : }
993 :
994 0 : if (make_persistent) {
995 0 : g->is_persistent = 1;
996 0 : entry_guards_changed_for_guard_selection(gs);
997 : }
998 : }
999 :
1000 : /**
1001 : * Return the number of sampled guards in <b>gs</b> that are "filtered"
1002 : * (that is, we're willing to connect to them) and that are "usable"
1003 : * (that is, either "reachable" or "maybe reachable").
1004 : *
1005 : * If a restriction is provided in <b>rst</b>, do not count any guards that
1006 : * violate it.
1007 : */
1008 : STATIC int
1009 514 : num_reachable_filtered_guards(const guard_selection_t *gs,
1010 : const entry_guard_restriction_t *rst)
1011 : {
1012 514 : int n_reachable_filtered_guards = 0;
1013 7432 : SMARTLIST_FOREACH_BEGIN(gs->sampled_entry_guards, entry_guard_t *, guard) {
1014 6918 : entry_guard_consider_retry(guard);
1015 6918 : if (! entry_guard_obeys_restriction(guard, rst))
1016 138 : continue;
1017 6780 : if (guard->is_usable_filtered_guard)
1018 6060 : ++n_reachable_filtered_guards;
1019 6918 : } SMARTLIST_FOREACH_END(guard);
1020 514 : return n_reachable_filtered_guards;
1021 : }
1022 :
1023 : /** Return the actual maximum size for the sample in <b>gs</b>,
1024 : * given that we know about <b>n_guards</b> total. */
1025 : static int
1026 157 : get_max_sample_size(guard_selection_t *gs,
1027 : int n_guards)
1028 : {
1029 157 : const int using_bridges = (gs->type == GS_TYPE_BRIDGE);
1030 157 : const int min_sample = get_min_filtered_sample_size();
1031 :
1032 : /* If we are in bridge mode, expand our sample set as needed without worrying
1033 : * about max size. We should respect the user's wishes to use many bridges if
1034 : * that's what they have specified in their configuration file. */
1035 157 : if (using_bridges)
1036 : return INT_MAX;
1037 :
1038 155 : const int max_sample_by_pct = (int)(n_guards * get_max_sample_threshold());
1039 155 : const int max_sample_absolute = get_max_sample_size_absolute();
1040 155 : const int max_sample = MIN(max_sample_by_pct, max_sample_absolute);
1041 155 : if (max_sample < min_sample)
1042 : return min_sample;
1043 : else
1044 147 : return max_sample;
1045 : }
1046 :
1047 : /**
1048 : * Return a smartlist of the all the guards that are not currently
1049 : * members of the sample (GUARDS - SAMPLED_GUARDS). The elements of
1050 : * this list are node_t pointers in the non-bridge case, and
1051 : * bridge_info_t pointers in the bridge case. Set *<b>n_guards_out</b>
1052 : * to the number of guards that we found in GUARDS, including those
1053 : * that were already sampled.
1054 : */
1055 : static smartlist_t *
1056 157 : get_eligible_guards(const or_options_t *options,
1057 : guard_selection_t *gs,
1058 : int *n_guards_out)
1059 : {
1060 : /* Construct eligible_guards as GUARDS - SAMPLED_GUARDS */
1061 157 : smartlist_t *eligible_guards = smartlist_new();
1062 157 : int n_guards = 0; // total size of "GUARDS"
1063 :
1064 157 : if (gs->type == GS_TYPE_BRIDGE) {
1065 2 : const smartlist_t *bridges = bridge_list_get();
1066 2 : SMARTLIST_FOREACH_BEGIN(bridges, bridge_info_t *, bridge) {
1067 0 : ++n_guards;
1068 0 : if (NULL != get_sampled_guard_for_bridge(gs, bridge)) {
1069 0 : continue;
1070 : }
1071 0 : smartlist_add(eligible_guards, bridge);
1072 0 : } SMARTLIST_FOREACH_END(bridge);
1073 : } else {
1074 155 : const smartlist_t *nodes = nodelist_get_list();
1075 155 : const int n_sampled = smartlist_len(gs->sampled_entry_guards);
1076 :
1077 : /* Build a bloom filter of our current guards: let's keep this O(N). */
1078 155 : digestset_t *sampled_guard_ids = digestset_new(n_sampled);
1079 1444 : SMARTLIST_FOREACH_BEGIN(gs->sampled_entry_guards, const entry_guard_t *,
1080 : guard) {
1081 1289 : digestset_add(sampled_guard_ids, guard->identity);
1082 1289 : } SMARTLIST_FOREACH_END(guard);
1083 :
1084 40858 : SMARTLIST_FOREACH_BEGIN(nodes, const node_t *, node) {
1085 40703 : if (! node_is_possible_guard(node))
1086 20683 : continue;
1087 20020 : if (gs->type == GS_TYPE_RESTRICTED) {
1088 : /* In restricted mode, we apply the filter BEFORE sampling, so
1089 : * that we are sampling from the nodes that we might actually
1090 : * select. If we sampled first, we might wind up with a sample
1091 : * that didn't include any EntryNodes at all. */
1092 0 : if (! node_passes_guard_filter(options, node))
1093 0 : continue;
1094 : }
1095 20020 : ++n_guards;
1096 20020 : if (digestset_probably_contains(sampled_guard_ids, node->identity))
1097 1296 : continue;
1098 18724 : smartlist_add(eligible_guards, (node_t*)node);
1099 40703 : } SMARTLIST_FOREACH_END(node);
1100 :
1101 : /* Now we can free that bloom filter. */
1102 155 : digestset_free(sampled_guard_ids);
1103 : }
1104 :
1105 157 : *n_guards_out = n_guards;
1106 157 : return eligible_guards;
1107 : }
1108 :
1109 : /** Helper: given a smartlist of either bridge_info_t (if gs->type is
1110 : * GS_TYPE_BRIDGE) or node_t (otherwise), pick one that can be a guard,
1111 : * add it as a guard, remove it from the list, and return a new
1112 : * entry_guard_t. Return NULL on failure. */
1113 : static entry_guard_t *
1114 1847 : select_and_add_guard_item_for_sample(guard_selection_t *gs,
1115 : smartlist_t *eligible_guards)
1116 : {
1117 1847 : entry_guard_t *added_guard;
1118 1847 : if (gs->type == GS_TYPE_BRIDGE) {
1119 0 : const bridge_info_t *bridge = smartlist_choose(eligible_guards);
1120 0 : if (BUG(!bridge))
1121 : return NULL; // LCOV_EXCL_LINE
1122 0 : smartlist_remove(eligible_guards, bridge);
1123 0 : added_guard = entry_guard_add_bridge_to_sample(gs, bridge);
1124 : } else {
1125 1847 : const node_t *node =
1126 1847 : node_sl_choose_by_bandwidth(eligible_guards, WEIGHT_FOR_GUARD);
1127 1847 : if (BUG(!node))
1128 : return NULL; // LCOV_EXCL_LINE
1129 1847 : smartlist_remove(eligible_guards, node);
1130 1847 : added_guard = entry_guard_add_to_sample(gs, node);
1131 : }
1132 :
1133 : return added_guard;
1134 : }
1135 :
1136 : /**
1137 : * Return true iff we need a consensus to update our guards, but we don't
1138 : * have one. (We can return 0 here either if the consensus is _not_ missing,
1139 : * or if we don't need a consensus because we're using bridges.)
1140 : */
1141 : static int
1142 191 : reasonably_live_consensus_is_missing(const guard_selection_t *gs)
1143 : {
1144 191 : tor_assert(gs);
1145 191 : if (gs->type == GS_TYPE_BRIDGE) {
1146 : /* We don't update bridges from the consensus; they aren't there. */
1147 : return 0;
1148 : }
1149 187 : return networkstatus_get_reasonably_live_consensus(
1150 : approx_time(),
1151 187 : usable_consensus_flavor()) == NULL;
1152 : }
1153 :
1154 : /**
1155 : * Add new guards to the sampled guards in <b>gs</b> until there are
1156 : * enough usable filtered guards, but never grow the sample beyond its
1157 : * maximum size. Return the last guard added, or NULL if none were
1158 : * added.
1159 : */
1160 : STATIC entry_guard_t *
1161 164 : entry_guards_expand_sample(guard_selection_t *gs)
1162 : {
1163 164 : tor_assert(gs);
1164 164 : const or_options_t *options = get_options();
1165 :
1166 164 : if (reasonably_live_consensus_is_missing(gs)) {
1167 7 : log_info(LD_GUARD, "Not expanding the sample guard set; we have "
1168 : "no reasonably live consensus.");
1169 7 : return NULL;
1170 : }
1171 :
1172 157 : int n_sampled = smartlist_len(gs->sampled_entry_guards);
1173 157 : entry_guard_t *added_guard = NULL;
1174 157 : int n_usable_filtered_guards = num_reachable_filtered_guards(gs, NULL);
1175 157 : int n_guards = 0;
1176 157 : smartlist_t *eligible_guards = get_eligible_guards(options, gs, &n_guards);
1177 :
1178 157 : const int max_sample = get_max_sample_size(gs, n_guards);
1179 157 : const int min_filtered_sample = get_min_filtered_sample_size();
1180 :
1181 157 : log_info(LD_GUARD, "Expanding the sample guard set. We have %d guards "
1182 : "in the sample, and %d eligible guards to extend it with.",
1183 : n_sampled, smartlist_len(eligible_guards));
1184 :
1185 2004 : while (n_usable_filtered_guards < min_filtered_sample) {
1186 : /* Has our sample grown too large to expand? */
1187 1860 : if (n_sampled >= max_sample) {
1188 3 : log_info(LD_GUARD, "Not expanding the guard sample any further; "
1189 : "just hit the maximum sample threshold of %d",
1190 : max_sample);
1191 3 : goto done;
1192 : }
1193 :
1194 : /* Did we run out of guards? */
1195 1857 : if (smartlist_len(eligible_guards) == 0) {
1196 : /* LCOV_EXCL_START
1197 : As long as MAX_SAMPLE_THRESHOLD makes can't be adjusted to
1198 : allow all guards to be sampled, this can't be reached.
1199 : */
1200 : log_info(LD_GUARD, "Not expanding the guard sample any further; "
1201 : "just ran out of eligible guards");
1202 : goto done;
1203 : /* LCOV_EXCL_STOP */
1204 : }
1205 :
1206 : /* Otherwise we can add at least one new guard. */
1207 1847 : added_guard = select_and_add_guard_item_for_sample(gs, eligible_guards);
1208 1847 : if (!added_guard)
1209 : goto done; // LCOV_EXCL_LINE -- only fails on BUG.
1210 :
1211 1847 : ++n_sampled;
1212 :
1213 1847 : if (added_guard->is_usable_filtered_guard)
1214 1810 : ++n_usable_filtered_guards;
1215 : }
1216 :
1217 144 : done:
1218 157 : smartlist_free(eligible_guards);
1219 157 : return added_guard;
1220 : }
1221 :
1222 : /**
1223 : * Helper: <b>guard</b> has just been removed from the sampled guards:
1224 : * also remove it from primary and confirmed. */
1225 : static void
1226 9 : remove_guard_from_confirmed_and_primary_lists(guard_selection_t *gs,
1227 : entry_guard_t *guard)
1228 : {
1229 9 : if (guard->is_primary) {
1230 3 : guard->is_primary = 0;
1231 3 : smartlist_remove_keeporder(gs->primary_entry_guards, guard);
1232 : } else {
1233 6 : if (BUG(smartlist_contains(gs->primary_entry_guards, guard))) {
1234 0 : smartlist_remove_keeporder(gs->primary_entry_guards, guard);
1235 : }
1236 : }
1237 :
1238 9 : if (guard->confirmed_idx >= 0) {
1239 3 : smartlist_remove_keeporder(gs->confirmed_entry_guards, guard);
1240 3 : guard->confirmed_idx = -1;
1241 3 : guard->confirmed_on_date = 0;
1242 : } else {
1243 6 : if (BUG(smartlist_contains(gs->confirmed_entry_guards, guard))) {
1244 : // LCOV_EXCL_START
1245 : smartlist_remove_keeporder(gs->confirmed_entry_guards, guard);
1246 : // LCOV_EXCL_STOP
1247 : }
1248 : }
1249 9 : }
1250 :
1251 : /** Return true iff <b>guard</b> is currently "listed" -- that is, it
1252 : * appears in the consensus, or as a configured bridge (as
1253 : * appropriate) */
1254 300 : MOCK_IMPL(STATIC int,
1255 : entry_guard_is_listed,(guard_selection_t *gs, const entry_guard_t *guard))
1256 : {
1257 300 : if (gs->type == GS_TYPE_BRIDGE) {
1258 0 : return NULL != get_bridge_info_for_guard(guard);
1259 : } else {
1260 300 : const node_t *node = node_get_by_id(guard->identity);
1261 :
1262 300 : return node && node_is_possible_guard(node);
1263 : }
1264 : }
1265 :
1266 : /**
1267 : * Enumerate <b>sampled_entry_guards</b> smartlist in <b>gs</b>.
1268 : * For each <b>entry_guard_t</b> object in smartlist, do the following:
1269 : * * Update <b>currently_listed</b> field to reflect if guard is listed
1270 : * in guard selection <b>gs</b>.
1271 : * * Set <b>unlisted_since_date</b> to approximate UNIX time of
1272 : * unlisting if guard is unlisted (randomize within 20% of
1273 : * get_remove_unlisted_guards_after_seconds()). Otherwise,
1274 : * set it to 0.
1275 : *
1276 : * Require <b>gs</b> to be non-null pointer.
1277 : * Return a number of entries updated.
1278 : */
1279 : static size_t
1280 18 : sampled_guards_update_consensus_presence(guard_selection_t *gs)
1281 : {
1282 18 : size_t n_changes = 0;
1283 :
1284 18 : tor_assert(gs);
1285 :
1286 36 : const time_t unlisted_since_slop =
1287 18 : get_remove_unlisted_guards_after_seconds() / 5;
1288 :
1289 322 : SMARTLIST_FOREACH_BEGIN(gs->sampled_entry_guards, entry_guard_t *, guard) {
1290 : /* XXXX #20827 check ed ID too */
1291 304 : const int is_listed = entry_guard_is_listed(gs, guard);
1292 :
1293 304 : if (is_listed && ! guard->currently_listed) {
1294 3 : ++n_changes;
1295 3 : guard->currently_listed = 1;
1296 3 : guard->unlisted_since_date = 0;
1297 3 : log_info(LD_GUARD, "Sampled guard %s is now listed again.",
1298 : entry_guard_describe(guard));
1299 301 : } else if (!is_listed && guard->currently_listed) {
1300 18 : ++n_changes;
1301 18 : guard->currently_listed = 0;
1302 18 : guard->unlisted_since_date = randomize_time(approx_time(),
1303 : unlisted_since_slop);
1304 18 : log_info(LD_GUARD, "Sampled guard %s is now unlisted.",
1305 : entry_guard_describe(guard));
1306 283 : } else if (is_listed && guard->currently_listed) {
1307 256 : log_debug(LD_GUARD, "Sampled guard %s is still listed.",
1308 : entry_guard_describe(guard));
1309 : } else {
1310 27 : tor_assert(! is_listed && ! guard->currently_listed);
1311 27 : log_debug(LD_GUARD, "Sampled guard %s is still unlisted.",
1312 : entry_guard_describe(guard));
1313 : }
1314 :
1315 : /* Clean up unlisted_since_date, just in case. */
1316 304 : if (guard->currently_listed && guard->unlisted_since_date) {
1317 9 : ++n_changes;
1318 9 : guard->unlisted_since_date = 0;
1319 9 : log_warn(LD_BUG, "Sampled guard %s was listed, but with "
1320 : "unlisted_since_date set. Fixing.",
1321 : entry_guard_describe(guard));
1322 295 : } else if (!guard->currently_listed && ! guard->unlisted_since_date) {
1323 9 : ++n_changes;
1324 9 : guard->unlisted_since_date = randomize_time(approx_time(),
1325 : unlisted_since_slop);
1326 9 : log_warn(LD_BUG, "Sampled guard %s was unlisted, but with "
1327 : "unlisted_since_date unset. Fixing.",
1328 : entry_guard_describe(guard));
1329 : }
1330 304 : } SMARTLIST_FOREACH_END(guard);
1331 :
1332 18 : return n_changes;
1333 : }
1334 :
1335 : /**
1336 : * Enumerate <b>sampled_entry_guards</b> smartlist in <b>gs</b>.
1337 : * For each <b>entry_guard_t</b> object in smartlist, do the following:
1338 : * * If <b>currently_listed</b> is false and <b>unlisted_since_date</b>
1339 : * is earlier than <b>remove_if_unlisted_since</b> - remove it.
1340 : * * Otherwise, check if <b>sampled_on_date</b> is earlier than
1341 : * <b>maybe_remove_if_sampled_before</b>.
1342 : * * When above condition is correct, remove the guard if:
1343 : * * It was never confirmed.
1344 : * * It was confirmed before <b>remove_if_confirmed_before</b>.
1345 : *
1346 : * Require <b>gs</b> to be non-null pointer.
1347 : * Return number of entries deleted.
1348 : */
1349 : static size_t
1350 18 : sampled_guards_prune_obsolete_entries(guard_selection_t *gs,
1351 : const time_t remove_if_unlisted_since,
1352 : const time_t maybe_remove_if_sampled_before,
1353 : const time_t remove_if_confirmed_before)
1354 : {
1355 18 : size_t n_changes = 0;
1356 :
1357 18 : tor_assert(gs);
1358 :
1359 322 : SMARTLIST_FOREACH_BEGIN(gs->sampled_entry_guards, entry_guard_t *, guard) {
1360 304 : int rmv = 0;
1361 :
1362 304 : if (guard->currently_listed == 0 &&
1363 45 : guard->unlisted_since_date < remove_if_unlisted_since) {
1364 : /*
1365 : "We have a live consensus, and {IS_LISTED} is false, and
1366 : {FIRST_UNLISTED_AT} is over get_remove_unlisted_guards_after_days()
1367 : days in the past."
1368 : */
1369 3 : log_info(LD_GUARD, "Removing sampled guard %s: it has been unlisted "
1370 : "for over %d days", entry_guard_describe(guard),
1371 : get_remove_unlisted_guards_after_days());
1372 3 : rmv = 1;
1373 301 : } else if (guard->sampled_on_date < maybe_remove_if_sampled_before) {
1374 : /* We have a live consensus, and {ADDED_ON_DATE} is over
1375 : {GUARD_LIFETIME} ago, *and* {CONFIRMED_ON_DATE} is either
1376 : "never", or over {GUARD_CONFIRMED_MIN_LIFETIME} ago.
1377 : */
1378 9 : if (guard->confirmed_on_date == 0) {
1379 3 : rmv = 1;
1380 3 : log_info(LD_GUARD, "Removing sampled guard %s: it was sampled "
1381 : "over %d days ago, but never confirmed.",
1382 : entry_guard_describe(guard),
1383 : get_guard_lifetime() / 86400);
1384 6 : } else if (guard->confirmed_on_date < remove_if_confirmed_before) {
1385 3 : rmv = 1;
1386 3 : log_info(LD_GUARD, "Removing sampled guard %s: it was sampled "
1387 : "over %d days ago, and confirmed over %d days ago.",
1388 : entry_guard_describe(guard),
1389 : get_guard_lifetime() / 86400,
1390 : get_guard_confirmed_min_lifetime() / 86400);
1391 : }
1392 : }
1393 :
1394 9 : if (rmv) {
1395 9 : ++n_changes;
1396 9 : SMARTLIST_DEL_CURRENT_KEEPORDER(gs->sampled_entry_guards, guard);
1397 9 : remove_guard_from_confirmed_and_primary_lists(gs, guard);
1398 9 : entry_guard_free(guard);
1399 : }
1400 304 : } SMARTLIST_FOREACH_END(guard);
1401 :
1402 18 : return n_changes;
1403 : }
1404 :
1405 : /**
1406 : * Update the status of all sampled guards based on the arrival of a
1407 : * new consensus networkstatus document. This will include marking
1408 : * some guards as listed or unlisted, and removing expired guards. */
1409 : STATIC void
1410 27 : sampled_guards_update_from_consensus(guard_selection_t *gs)
1411 : {
1412 27 : tor_assert(gs);
1413 :
1414 : // It's important to use a reasonably live consensus here; we want clients
1415 : // to bootstrap even if their clock is skewed by more than 2-3 hours.
1416 : // But we don't want to make changes based on anything that's really old.
1417 27 : if (reasonably_live_consensus_is_missing(gs)) {
1418 9 : log_info(LD_GUARD, "Not updating the sample guard set; we have "
1419 : "no reasonably live consensus.");
1420 9 : return;
1421 : }
1422 18 : log_info(LD_GUARD, "Updating sampled guard status based on received "
1423 : "consensus.");
1424 :
1425 : /* First: Update listed/unlisted. */
1426 18 : size_t n_changes = sampled_guards_update_consensus_presence(gs);
1427 :
1428 36 : const time_t remove_if_unlisted_since =
1429 18 : approx_time() - get_remove_unlisted_guards_after_seconds();
1430 36 : const time_t maybe_remove_if_sampled_before =
1431 18 : approx_time() - get_guard_lifetime();
1432 36 : const time_t remove_if_confirmed_before =
1433 18 : approx_time() - get_guard_confirmed_min_lifetime();
1434 :
1435 : /* Then: remove the ones that have been junk for too long */
1436 36 : n_changes +=
1437 18 : sampled_guards_prune_obsolete_entries(gs,
1438 : remove_if_unlisted_since,
1439 : maybe_remove_if_sampled_before,
1440 : remove_if_confirmed_before);
1441 :
1442 18 : if (n_changes) {
1443 12 : gs->primary_guards_up_to_date = 0;
1444 12 : entry_guards_update_filtered_sets(gs);
1445 : /* We don't need to rebuild the confirmed list right here -- we may have
1446 : * removed confirmed guards above, but we can't have added any new
1447 : * confirmed guards.
1448 : */
1449 12 : entry_guards_changed_for_guard_selection(gs);
1450 : }
1451 : }
1452 :
1453 : /**
1454 : * Return true iff <b>node</b> is a Tor relay that we are configured to
1455 : * be able to connect to. */
1456 : static int
1457 5080 : node_passes_guard_filter(const or_options_t *options,
1458 : const node_t *node)
1459 : {
1460 : /* NOTE: Make sure that this function stays in sync with
1461 : * options_transition_affects_entry_guards */
1462 5080 : if (routerset_contains_node(options->ExcludeNodes, node))
1463 : return 0;
1464 :
1465 5410 : if (options->EntryNodes &&
1466 412 : !routerset_contains_node(options->EntryNodes, node))
1467 : return 0;
1468 :
1469 4588 : if (!reachable_addr_allows_node(node, FIREWALL_OR_CONNECTION, 0))
1470 : return 0;
1471 :
1472 4561 : if (node_is_a_configured_bridge(node))
1473 3 : return 0;
1474 :
1475 : return 1;
1476 : }
1477 :
1478 : /** Helper: Return true iff <b>bridge</b> passes our configuration
1479 : * filter-- if it is a relay that we are configured to be able to
1480 : * connect to. */
1481 : static int
1482 0 : bridge_passes_guard_filter(const or_options_t *options,
1483 : const bridge_info_t *bridge)
1484 : {
1485 0 : tor_assert(bridge);
1486 0 : if (!bridge)
1487 : return 0;
1488 :
1489 0 : if (routerset_contains_bridge(options->ExcludeNodes, bridge))
1490 : return 0;
1491 :
1492 : /* Ignore entrynodes */
1493 0 : const tor_addr_port_t *addrport = bridge_get_addr_port(bridge);
1494 :
1495 0 : if (!reachable_addr_allows_addr(&addrport->addr,
1496 0 : addrport->port,
1497 : FIREWALL_OR_CONNECTION,
1498 : 0, 0))
1499 0 : return 0;
1500 :
1501 : return 1;
1502 : }
1503 :
1504 : /**
1505 : * Return true iff <b>guard</b> is a Tor relay that we are configured to
1506 : * be able to connect to, and we haven't disabled it for omission from
1507 : * the consensus or path bias issues. */
1508 : static int
1509 2311 : entry_guard_passes_filter(const or_options_t *options, guard_selection_t *gs,
1510 : entry_guard_t *guard)
1511 : {
1512 2311 : if (guard->currently_listed == 0)
1513 : return 0;
1514 2263 : if (guard->pb.path_bias_disabled)
1515 : return 0;
1516 :
1517 2254 : if (gs->type == GS_TYPE_BRIDGE) {
1518 4 : const bridge_info_t *bridge = get_bridge_info_for_guard(guard);
1519 4 : if (bridge == NULL)
1520 : return 0;
1521 0 : return bridge_passes_guard_filter(options, bridge);
1522 : } else {
1523 2250 : const node_t *node = node_get_by_id(guard->identity);
1524 2250 : if (node == NULL) {
1525 : // This can happen when currently_listed is true, and we're not updating
1526 : // it because we don't have a live consensus.
1527 : return 0;
1528 : }
1529 :
1530 2222 : return node_passes_guard_filter(options, node);
1531 : }
1532 : }
1533 :
1534 : /** Return true iff <b>guard</b> is in the same family as <b>node</b>.
1535 : */
1536 : static int
1537 327 : guard_in_node_family(const entry_guard_t *guard, const node_t *node)
1538 : {
1539 327 : const node_t *guard_node = node_get_by_id(guard->identity);
1540 327 : if (guard_node) {
1541 327 : return nodes_in_same_family(guard_node, node);
1542 : } else {
1543 : /* If we don't have a node_t for the guard node, we might have
1544 : * a bridge_info_t for it. So let's check to see whether the bridge
1545 : * address matches has any family issues.
1546 : *
1547 : * (Strictly speaking, I believe this check is unnecessary, since we only
1548 : * use it to avoid the exit's family when building circuits, and we don't
1549 : * build multihop circuits until we have a routerinfo_t for the
1550 : * bridge... at which point, we'll also have a node_t for the
1551 : * bridge. Nonetheless, it seems wise to include it, in case our
1552 : * assumptions change down the road. -nickm.)
1553 : */
1554 0 : if (get_options()->EnforceDistinctSubnets && guard->bridge_addr) {
1555 0 : tor_addr_t node_addr;
1556 0 : node_get_addr(node, &node_addr);
1557 0 : if (router_addrs_in_same_network(&node_addr,
1558 0 : &guard->bridge_addr->addr)) {
1559 0 : return 1;
1560 : }
1561 : }
1562 0 : return 0;
1563 : }
1564 : }
1565 :
1566 : /* Allocate and return a new exit guard restriction (where <b>exit_id</b> is of
1567 : * size DIGEST_LEN) */
1568 : STATIC entry_guard_restriction_t *
1569 15 : guard_create_exit_restriction(const uint8_t *exit_id)
1570 : {
1571 15 : entry_guard_restriction_t *rst = NULL;
1572 15 : rst = tor_malloc_zero(sizeof(entry_guard_restriction_t));
1573 15 : rst->type = RST_EXIT_NODE;
1574 15 : memcpy(rst->exclude_id, exit_id, DIGEST_LEN);
1575 15 : return rst;
1576 : }
1577 :
1578 : /** If we have fewer than this many possible usable guards, don't set
1579 : * MD-availability-based restrictions: we might denylist all of them. */
1580 : #define MIN_GUARDS_FOR_MD_RESTRICTION 10
1581 :
1582 : /** Return true if we should set md dirserver restrictions. We might not want
1583 : * to set those if our guard options are too restricted, since we don't want
1584 : * to denylist all of them. */
1585 : static int
1586 4 : should_set_md_dirserver_restriction(void)
1587 : {
1588 4 : const guard_selection_t *gs = get_guard_selection_info();
1589 4 : int num_usable_guards = num_reachable_filtered_guards(gs, NULL);
1590 :
1591 : /* Don't set restriction if too few reachable filtered guards. */
1592 4 : if (num_usable_guards < MIN_GUARDS_FOR_MD_RESTRICTION) {
1593 1 : log_info(LD_GUARD, "Not setting md restriction: only %d"
1594 : " usable guards.", num_usable_guards);
1595 1 : return 0;
1596 : }
1597 :
1598 : /* We have enough usable guards: set MD restriction */
1599 : return 1;
1600 : }
1601 :
1602 : /** Allocate and return an outdated md guard restriction. Return NULL if no
1603 : * such restriction is needed. */
1604 : STATIC entry_guard_restriction_t *
1605 4 : guard_create_dirserver_md_restriction(void)
1606 : {
1607 4 : entry_guard_restriction_t *rst = NULL;
1608 :
1609 4 : if (!should_set_md_dirserver_restriction()) {
1610 1 : log_debug(LD_GUARD, "Not setting md restriction: too few "
1611 : "filtered guards.");
1612 1 : return NULL;
1613 : }
1614 :
1615 3 : rst = tor_malloc_zero(sizeof(entry_guard_restriction_t));
1616 3 : rst->type = RST_OUTDATED_MD_DIRSERVER;
1617 :
1618 3 : return rst;
1619 : }
1620 :
1621 : /* Return True if <b>guard</b> obeys the exit restriction <b>rst</b>. */
1622 : static int
1623 327 : guard_obeys_exit_restriction(const entry_guard_t *guard,
1624 : const entry_guard_restriction_t *rst)
1625 : {
1626 327 : tor_assert(rst->type == RST_EXIT_NODE);
1627 :
1628 : // Exclude the exit ID and all of its family.
1629 327 : const node_t *node = node_get_by_id((const char*)rst->exclude_id);
1630 327 : if (node && guard_in_node_family(guard, node))
1631 : return 0;
1632 :
1633 24 : return tor_memneq(guard->identity, rst->exclude_id, DIGEST_LEN);
1634 : }
1635 :
1636 : /** Return True if <b>guard</b> should be used as a dirserver for fetching
1637 : * microdescriptors. */
1638 : static int
1639 129 : guard_obeys_md_dirserver_restriction(const entry_guard_t *guard)
1640 : {
1641 : /* If this guard is an outdated dirserver, don't use it. */
1642 129 : if (microdesc_relay_is_outdated_dirserver(guard->identity)) {
1643 27 : log_info(LD_GENERAL, "Skipping %s dirserver: outdated",
1644 : hex_str(guard->identity, DIGEST_LEN));
1645 27 : return 0;
1646 : }
1647 :
1648 102 : log_debug(LD_GENERAL, "%s dirserver obeys md restrictions",
1649 : hex_str(guard->identity, DIGEST_LEN));
1650 :
1651 102 : return 1;
1652 : }
1653 :
1654 : /**
1655 : * Return true iff <b>guard</b> obeys the restrictions defined in <b>rst</b>.
1656 : * (If <b>rst</b> is NULL, there are no restrictions.)
1657 : */
1658 : static int
1659 13432 : entry_guard_obeys_restriction(const entry_guard_t *guard,
1660 : const entry_guard_restriction_t *rst)
1661 : {
1662 13432 : tor_assert(guard);
1663 13432 : if (! rst)
1664 : return 1; // No restriction? No problem.
1665 :
1666 456 : if (rst->type == RST_EXIT_NODE) {
1667 327 : return guard_obeys_exit_restriction(guard, rst);
1668 129 : } else if (rst->type == RST_OUTDATED_MD_DIRSERVER) {
1669 129 : return guard_obeys_md_dirserver_restriction(guard);
1670 : }
1671 :
1672 0 : tor_assert_nonfatal_unreached();
1673 0 : return 0;
1674 : }
1675 :
1676 : /**
1677 : * Update the <b>is_filtered_guard</b> and <b>is_usable_filtered_guard</b>
1678 : * flags on <b>guard</b>. */
1679 : void
1680 2311 : entry_guard_set_filtered_flags(const or_options_t *options,
1681 : guard_selection_t *gs,
1682 : entry_guard_t *guard)
1683 : {
1684 2311 : unsigned was_filtered = guard->is_filtered_guard;
1685 2311 : guard->is_filtered_guard = 0;
1686 2311 : guard->is_usable_filtered_guard = 0;
1687 :
1688 2311 : if (entry_guard_passes_filter(options, gs, guard)) {
1689 2109 : guard->is_filtered_guard = 1;
1690 :
1691 2109 : if (guard->is_reachable != GUARD_REACHABLE_NO)
1692 2106 : guard->is_usable_filtered_guard = 1;
1693 :
1694 2109 : entry_guard_consider_retry(guard);
1695 : }
1696 2311 : log_debug(LD_GUARD, "Updated sampled guard %s: filtered=%d; "
1697 : "reachable_filtered=%d.", entry_guard_describe(guard),
1698 : guard->is_filtered_guard, guard->is_usable_filtered_guard);
1699 :
1700 2311 : if (!bool_eq(was_filtered, guard->is_filtered_guard)) {
1701 : /* This guard might now be primary or nonprimary. */
1702 1958 : gs->primary_guards_up_to_date = 0;
1703 : }
1704 2311 : }
1705 :
1706 : /**
1707 : * Update the <b>is_filtered_guard</b> and <b>is_usable_filtered_guard</b>
1708 : * flag on every guard in <b>gs</b>. */
1709 : STATIC void
1710 36 : entry_guards_update_filtered_sets(guard_selection_t *gs)
1711 : {
1712 36 : const or_options_t *options = get_options();
1713 :
1714 476 : SMARTLIST_FOREACH_BEGIN(gs->sampled_entry_guards, entry_guard_t *, guard) {
1715 440 : entry_guard_set_filtered_flags(options, gs, guard);
1716 440 : } SMARTLIST_FOREACH_END(guard);
1717 36 : }
1718 :
1719 : /**
1720 : * Return the first sampled guard from the reachable filtered sample guards
1721 : * in <b>gs</b>, subject to the exclusion rules listed in <b>flags</b>.
1722 : * Return NULL if no such guard can be found.
1723 : *
1724 : * Make sure that the sample is big enough, and that all the filter flags
1725 : * are set correctly, before calling this function.
1726 : *
1727 : * If a restriction is provided in <b>rst</b>, do not return any guards that
1728 : * violate it.
1729 : **/
1730 : STATIC entry_guard_t *
1731 290 : first_reachable_filtered_entry_guard(guard_selection_t *gs,
1732 : const entry_guard_restriction_t *rst,
1733 : unsigned flags)
1734 : {
1735 290 : tor_assert(gs);
1736 290 : entry_guard_t *result = NULL;
1737 290 : const unsigned exclude_confirmed = flags & SAMPLE_EXCLUDE_CONFIRMED;
1738 290 : const unsigned exclude_primary = flags & SAMPLE_EXCLUDE_PRIMARY;
1739 290 : const unsigned exclude_pending = flags & SAMPLE_EXCLUDE_PENDING;
1740 290 : const unsigned no_update_primary = flags & SAMPLE_NO_UPDATE_PRIMARY;
1741 290 : const unsigned need_descriptor = flags & SAMPLE_EXCLUDE_NO_DESCRIPTOR;
1742 :
1743 4728 : SMARTLIST_FOREACH_BEGIN(gs->sampled_entry_guards, entry_guard_t *, guard) {
1744 4438 : entry_guard_consider_retry(guard);
1745 4438 : } SMARTLIST_FOREACH_END(guard);
1746 :
1747 290 : const int n_reachable_filtered = num_reachable_filtered_guards(gs, rst);
1748 :
1749 290 : log_info(LD_GUARD, "Trying to sample a reachable guard: We know of %d "
1750 : "in the USABLE_FILTERED set.", n_reachable_filtered);
1751 :
1752 290 : const int min_filtered_sample = get_min_filtered_sample_size();
1753 290 : if (n_reachable_filtered < min_filtered_sample) {
1754 125 : log_info(LD_GUARD, " (That isn't enough. Trying to expand the sample.)");
1755 125 : entry_guards_expand_sample(gs);
1756 : }
1757 :
1758 290 : if (exclude_primary && !gs->primary_guards_up_to_date && !no_update_primary)
1759 39 : entry_guards_update_primary(gs);
1760 :
1761 : /* Build the set of reachable filtered guards. */
1762 290 : smartlist_t *reachable_filtered_sample = smartlist_new();
1763 6050 : SMARTLIST_FOREACH_BEGIN(gs->sampled_entry_guards, entry_guard_t *, guard) {
1764 5760 : entry_guard_consider_retry(guard);// redundant, but cheap.
1765 5760 : if (! entry_guard_obeys_restriction(guard, rst))
1766 138 : continue;
1767 5622 : if (! guard->is_usable_filtered_guard)
1768 229 : continue;
1769 5393 : if (exclude_confirmed && guard->confirmed_idx >= 0)
1770 30 : continue;
1771 5363 : if (exclude_primary && guard->is_primary)
1772 196 : continue;
1773 5167 : if (exclude_pending && guard->is_pending)
1774 30 : continue;
1775 5137 : if (need_descriptor && !guard_has_descriptor(guard))
1776 0 : continue;
1777 5137 : smartlist_add(reachable_filtered_sample, guard);
1778 5760 : } SMARTLIST_FOREACH_END(guard);
1779 :
1780 290 : log_info(LD_GUARD, " (After filters [%x], we have %d guards to consider.)",
1781 : flags, smartlist_len(reachable_filtered_sample));
1782 :
1783 290 : if (smartlist_len(reachable_filtered_sample)) {
1784 : /**
1785 : * Get the first guard of the filtered set builds from
1786 : * sampled_entry_guards. Proposal 310 suggests this design to overcome
1787 : * performance and security issues linked to the previous selection
1788 : * method. The guard selected here should be filtered out if this function
1789 : * is called again in the same context. I.e., if we filter guards to add
1790 : * them into some list X, then the guards from list X will be filtered out
1791 : * when this function is called again. Hence it requires setting exclude
1792 : * flags in a appropriate way (depending of the context of the caller).
1793 : */
1794 271 : result = smartlist_get(reachable_filtered_sample, 0);
1795 271 : log_info(LD_GUARD, " (Selected %s.)",
1796 : result ? entry_guard_describe(result) : "<null>");
1797 : }
1798 290 : smartlist_free(reachable_filtered_sample);
1799 :
1800 290 : return result;
1801 : }
1802 :
1803 : static int
1804 17 : compare_guards_by_confirmed_idx(const void **a_, const void **b_)
1805 : {
1806 17 : const entry_guard_t *a = *a_, *b = *b_;
1807 17 : if (a->confirmed_idx < b->confirmed_idx)
1808 : return -1;
1809 9 : else if (a->confirmed_idx > b->confirmed_idx)
1810 : return 1;
1811 : else
1812 6 : return 0;
1813 : }
1814 : /**
1815 : * Helper: compare two entry_guard_t by their sampled_idx values.
1816 : * Used to sort the sampled list
1817 : */
1818 : static int
1819 731 : compare_guards_by_sampled_idx(const void **a_, const void **b_)
1820 : {
1821 731 : const entry_guard_t *a = *a_, *b = *b_;
1822 731 : if (a->sampled_idx < b->sampled_idx)
1823 : return -1;
1824 42 : else if (a->sampled_idx > b->sampled_idx)
1825 : return 1;
1826 : else
1827 0 : return 0;
1828 : }
1829 :
1830 : /**
1831 : * Find the confirmed guards from among the sampled guards in <b>gs</b>,
1832 : * and put them in confirmed_entry_guards in the correct
1833 : * order. Recalculate their indices.
1834 : */
1835 : STATIC void
1836 15 : entry_guards_update_confirmed(guard_selection_t *gs)
1837 : {
1838 15 : smartlist_clear(gs->confirmed_entry_guards);
1839 152 : SMARTLIST_FOREACH_BEGIN(gs->sampled_entry_guards, entry_guard_t *, guard) {
1840 137 : if (guard->confirmed_idx >= 0)
1841 24 : smartlist_add(gs->confirmed_entry_guards, guard);
1842 137 : } SMARTLIST_FOREACH_END(guard);
1843 :
1844 15 : smartlist_sort(gs->confirmed_entry_guards, compare_guards_by_confirmed_idx);
1845 : /** Needed to keep a dense array of confirmed_idx */
1846 15 : int any_changed = 0;
1847 39 : SMARTLIST_FOREACH_BEGIN(gs->confirmed_entry_guards, entry_guard_t *, guard) {
1848 24 : if (guard->confirmed_idx != guard_sl_idx) {
1849 17 : any_changed = 1;
1850 17 : guard->confirmed_idx = guard_sl_idx;
1851 : }
1852 24 : } SMARTLIST_FOREACH_END(guard);
1853 :
1854 15 : gs->next_confirmed_idx = smartlist_len(gs->confirmed_entry_guards);
1855 : // We need the confirmed list to always be give guards in sampled order
1856 15 : smartlist_sort(gs->confirmed_entry_guards, compare_guards_by_sampled_idx);
1857 :
1858 15 : if (any_changed) {
1859 8 : entry_guards_changed_for_guard_selection(gs);
1860 : }
1861 15 : }
1862 :
1863 : /**
1864 : * Mark <b>guard</b> as a confirmed guard -- that is, one that we have
1865 : * connected to, and intend to use again.
1866 : */
1867 : STATIC void
1868 219 : make_guard_confirmed(guard_selection_t *gs, entry_guard_t *guard)
1869 : {
1870 219 : if (BUG(guard->confirmed_on_date && guard->confirmed_idx >= 0))
1871 : return; // LCOV_EXCL_LINE
1872 :
1873 219 : if (BUG(smartlist_contains(gs->confirmed_entry_guards, guard)))
1874 : return; // LCOV_EXCL_LINE
1875 :
1876 219 : const int GUARD_LIFETIME = get_guard_lifetime();
1877 219 : guard->confirmed_on_date = randomize_time(approx_time(), GUARD_LIFETIME/10);
1878 :
1879 219 : log_info(LD_GUARD, "Marking %s as a confirmed guard (index %d)",
1880 : entry_guard_describe(guard),
1881 : gs->next_confirmed_idx);
1882 :
1883 219 : guard->confirmed_idx = gs->next_confirmed_idx++;
1884 219 : smartlist_add(gs->confirmed_entry_guards, guard);
1885 : /** The confirmation ordering might not be the sample ording. We need to
1886 : * reorder */
1887 219 : smartlist_sort(gs->confirmed_entry_guards, compare_guards_by_sampled_idx);
1888 :
1889 : // This confirmed guard might kick something else out of the primary
1890 : // guards.
1891 219 : gs->primary_guards_up_to_date = 0;
1892 :
1893 219 : entry_guards_changed_for_guard_selection(gs);
1894 : }
1895 :
1896 : /**
1897 : * Recalculate the list of primary guards (the ones we'd prefer to use) from
1898 : * the filtered sample and the confirmed list.
1899 : */
1900 : STATIC void
1901 289 : entry_guards_update_primary(guard_selection_t *gs)
1902 : {
1903 289 : tor_assert(gs);
1904 :
1905 : // prevent recursion. Recursion is potentially very bad here.
1906 289 : static int running = 0;
1907 289 : tor_assert(!running);
1908 289 : running = 1;
1909 :
1910 289 : const int N_PRIMARY_GUARDS = get_n_primary_guards();
1911 :
1912 289 : smartlist_t *new_primary_guards = smartlist_new();
1913 289 : smartlist_t *old_primary_guards = smartlist_new();
1914 289 : smartlist_add_all(old_primary_guards, gs->primary_entry_guards);
1915 :
1916 : /* Set this flag now, to prevent the calls below from recursing. */
1917 289 : gs->primary_guards_up_to_date = 1;
1918 :
1919 : /* First, can we fill it up with confirmed guards? */
1920 802 : SMARTLIST_FOREACH_BEGIN(gs->confirmed_entry_guards, entry_guard_t *, guard) {
1921 567 : if (smartlist_len(new_primary_guards) >= N_PRIMARY_GUARDS)
1922 : break;
1923 513 : if (! guard->is_filtered_guard)
1924 6 : continue;
1925 507 : guard->is_primary = 1;
1926 507 : smartlist_add(new_primary_guards, guard);
1927 513 : } SMARTLIST_FOREACH_END(guard);
1928 :
1929 937 : SMARTLIST_FOREACH_BEGIN(old_primary_guards, entry_guard_t *, guard) {
1930 : /* Can we keep any older primary guards? First remove all the ones
1931 : * that we already kept. */
1932 648 : if (smartlist_contains(new_primary_guards, guard)) {
1933 498 : SMARTLIST_DEL_CURRENT_KEEPORDER(old_primary_guards, guard);
1934 498 : continue;
1935 : }
1936 :
1937 : /* Now add any that are still good. */
1938 150 : if (smartlist_len(new_primary_guards) < N_PRIMARY_GUARDS &&
1939 : guard->is_filtered_guard) {
1940 144 : guard->is_primary = 1;
1941 144 : smartlist_add(new_primary_guards, guard);
1942 144 : SMARTLIST_DEL_CURRENT_KEEPORDER(old_primary_guards, guard);
1943 : } else {
1944 : /* Mark the remaining previous primary guards as non-primary */
1945 6 : guard->is_primary = 0;
1946 : }
1947 648 : } SMARTLIST_FOREACH_END(guard);
1948 :
1949 : /* Finally, fill out the list with sampled guards. */
1950 476 : while (smartlist_len(new_primary_guards) < N_PRIMARY_GUARDS) {
1951 197 : entry_guard_t *guard = first_reachable_filtered_entry_guard(gs, NULL,
1952 : SAMPLE_EXCLUDE_CONFIRMED|
1953 : SAMPLE_EXCLUDE_PRIMARY|
1954 : SAMPLE_NO_UPDATE_PRIMARY);
1955 197 : if (!guard)
1956 : break;
1957 187 : guard->is_primary = 1;
1958 187 : smartlist_add(new_primary_guards, guard);
1959 : }
1960 :
1961 : #if 1
1962 : /* Debugging. */
1963 6158 : SMARTLIST_FOREACH(gs->sampled_entry_guards, entry_guard_t *, guard, {
1964 : tor_assert_nonfatal(
1965 : bool_eq(guard->is_primary,
1966 : smartlist_contains(new_primary_guards, guard)));
1967 : });
1968 : #endif /* 1 */
1969 :
1970 289 : const int any_change = !smartlist_ptrs_eq(gs->primary_entry_guards,
1971 : new_primary_guards);
1972 289 : if (any_change) {
1973 73 : log_info(LD_GUARD, "Primary entry guards have changed. "
1974 : "New primary guard list is: ");
1975 73 : int n = smartlist_len(new_primary_guards);
1976 290 : SMARTLIST_FOREACH_BEGIN(new_primary_guards, entry_guard_t *, g) {
1977 422 : log_info(LD_GUARD, " %d/%d: %s%s%s",
1978 : g_sl_idx+1, n, entry_guard_describe(g),
1979 : g->confirmed_idx >= 0 ? " (confirmed)" : "",
1980 : g->is_filtered_guard ? "" : " (excluded by filter)");
1981 217 : } SMARTLIST_FOREACH_END(g);
1982 73 : smartlist_sort(new_primary_guards, compare_guards_by_sampled_idx);
1983 : }
1984 :
1985 289 : smartlist_free(old_primary_guards);
1986 289 : smartlist_free(gs->primary_entry_guards);
1987 289 : gs->primary_entry_guards = new_primary_guards;
1988 289 : gs->primary_guards_up_to_date = 1;
1989 289 : running = 0;
1990 289 : }
1991 :
1992 : /**
1993 : * Return the number of seconds after the last attempt at which we should
1994 : * retry a guard that has been failing since <b>failing_since</b>.
1995 : */
1996 : static int
1997 1314 : get_retry_schedule(time_t failing_since, time_t now,
1998 : int is_primary)
1999 : {
2000 1314 : const unsigned SIX_HOURS = 6 * 3600;
2001 1314 : const unsigned FOUR_DAYS = 4 * 86400;
2002 1314 : const unsigned SEVEN_DAYS = 7 * 86400;
2003 :
2004 1314 : time_t tdiff;
2005 1314 : if (now > failing_since) {
2006 900 : tdiff = now - failing_since;
2007 : } else {
2008 : tdiff = 0;
2009 : }
2010 :
2011 1314 : const struct {
2012 : time_t maximum; int primary_delay; int nonprimary_delay;
2013 1314 : } delays[] = {
2014 : // clang-format off
2015 : { SIX_HOURS, 10*60, 1*60*60 },
2016 : { FOUR_DAYS, 90*60, 4*60*60 },
2017 : { SEVEN_DAYS, 4*60*60, 18*60*60 },
2018 : { TIME_MAX, 9*60*60, 36*60*60 }
2019 : // clang-format on
2020 : };
2021 :
2022 1314 : unsigned i;
2023 1344 : for (i = 0; i < ARRAY_LENGTH(delays); ++i) {
2024 1344 : if (tdiff <= delays[i].maximum) {
2025 1314 : return is_primary ? delays[i].primary_delay : delays[i].nonprimary_delay;
2026 : }
2027 : }
2028 : /* LCOV_EXCL_START -- can't reach, since delays ends with TIME_MAX. */
2029 : tor_assert_nonfatal_unreached();
2030 : return 36*60*60;
2031 : /* LCOV_EXCL_STOP */
2032 : }
2033 :
2034 : /**
2035 : * If <b>guard</b> is unreachable, consider whether enough time has passed
2036 : * to consider it maybe-reachable again.
2037 : */
2038 : STATIC void
2039 20051 : entry_guard_consider_retry(entry_guard_t *guard)
2040 : {
2041 20051 : if (guard->is_reachable != GUARD_REACHABLE_NO)
2042 : return; /* No retry needed. */
2043 :
2044 1314 : const time_t now = approx_time();
2045 1314 : const int delay =
2046 1314 : get_retry_schedule(guard->failing_since, now, guard->is_primary);
2047 1314 : const time_t last_attempt = guard->last_tried_to_connect;
2048 :
2049 1314 : if (BUG(last_attempt == 0) ||
2050 1314 : now >= last_attempt + delay) {
2051 : /* We should mark this retriable. */
2052 12 : char tbuf[ISO_TIME_LEN+1];
2053 12 : format_local_iso_time(tbuf, last_attempt);
2054 27 : log_info(LD_GUARD, "Marked %s%sguard %s for possible retry, since we "
2055 : "haven't tried to use it since %s.",
2056 : guard->is_primary?"primary ":"",
2057 : guard->confirmed_idx>=0?"confirmed ":"",
2058 : entry_guard_describe(guard),
2059 : tbuf);
2060 :
2061 12 : guard->is_reachable = GUARD_REACHABLE_MAYBE;
2062 12 : if (guard->is_filtered_guard)
2063 12 : guard->is_usable_filtered_guard = 1;
2064 : }
2065 : }
2066 :
2067 : /** Tell the entry guards subsystem that we have confirmed that as of
2068 : * just now, we're on the internet. */
2069 : void
2070 255 : entry_guards_note_internet_connectivity(guard_selection_t *gs)
2071 : {
2072 255 : gs->last_time_on_internet = approx_time();
2073 255 : }
2074 :
2075 : /**
2076 : * Pick a primary guard for use with a circuit, if available. Update the
2077 : * <b>last_tried_to_connect</b> time and the <b>is_pending</b> fields of the
2078 : * guard as appropriate. Set <b>state_out</b> to the new guard-state
2079 : * of the circuit.
2080 : */
2081 : static entry_guard_t *
2082 256 : select_primary_guard_for_circuit(guard_selection_t *gs,
2083 : guard_usage_t usage,
2084 : const entry_guard_restriction_t *rst,
2085 : unsigned *state_out)
2086 : {
2087 256 : const int need_descriptor = (usage == GUARD_USAGE_TRAFFIC);
2088 256 : entry_guard_t *chosen_guard = NULL;
2089 :
2090 256 : int num_entry_guards = get_n_primary_guards_to_use(usage);
2091 256 : smartlist_t *usable_primary_guards = smartlist_new();
2092 :
2093 671 : SMARTLIST_FOREACH_BEGIN(gs->primary_entry_guards, entry_guard_t *, guard) {
2094 571 : entry_guard_consider_retry(guard);
2095 571 : if (!entry_guard_obeys_restriction(guard, rst)) {
2096 27 : log_info(LD_GUARD, "Entry guard %s doesn't obey restriction, we test the"
2097 : " next one", entry_guard_describe(guard));
2098 27 : continue;
2099 : }
2100 544 : if (guard->is_reachable != GUARD_REACHABLE_NO) {
2101 157 : if (need_descriptor && !guard_has_descriptor(guard)) {
2102 0 : log_info(LD_GUARD, "Guard %s does not have a descriptor",
2103 : entry_guard_describe(guard));
2104 0 : continue;
2105 : }
2106 157 : *state_out = GUARD_CIRC_STATE_USABLE_ON_COMPLETION;
2107 157 : guard->last_tried_to_connect = approx_time();
2108 157 : smartlist_add(usable_primary_guards, guard);
2109 157 : if (smartlist_len(usable_primary_guards) >= num_entry_guards)
2110 : break;
2111 : }
2112 415 : } SMARTLIST_FOREACH_END(guard);
2113 :
2114 256 : if (smartlist_len(usable_primary_guards)) {
2115 157 : chosen_guard = smartlist_choose(usable_primary_guards);
2116 157 : log_info(LD_GUARD,
2117 : "Selected primary guard %s for circuit from a list size of %d.",
2118 : entry_guard_describe(chosen_guard),
2119 : smartlist_len(usable_primary_guards));
2120 157 : smartlist_free(usable_primary_guards);
2121 : }
2122 :
2123 256 : smartlist_free(usable_primary_guards);
2124 256 : return chosen_guard;
2125 : }
2126 :
2127 : /**
2128 : * For use with a circuit, pick a non-pending running filtered confirmed guard,
2129 : * if one is available. Update the <b>last_tried_to_connect</b> time and the
2130 : * <b>is_pending</b> fields of the guard as appropriate. Set <b>state_out</b>
2131 : * to the new guard-state of the circuit.
2132 : */
2133 : static entry_guard_t *
2134 99 : select_confirmed_guard_for_circuit(guard_selection_t *gs,
2135 : guard_usage_t usage,
2136 : const entry_guard_restriction_t *rst,
2137 : unsigned *state_out)
2138 : {
2139 99 : const int need_descriptor = (usage == GUARD_USAGE_TRAFFIC);
2140 :
2141 474 : SMARTLIST_FOREACH_BEGIN(gs->confirmed_entry_guards, entry_guard_t *, guard) {
2142 396 : if (guard->is_primary)
2143 270 : continue; /* we already considered this one. */
2144 126 : if (! entry_guard_obeys_restriction(guard, rst))
2145 24 : continue;
2146 102 : entry_guard_consider_retry(guard);
2147 102 : if (guard->is_usable_filtered_guard && ! guard->is_pending) {
2148 21 : if (need_descriptor && !guard_has_descriptor(guard))
2149 0 : continue; /* not a bug */
2150 21 : guard->is_pending = 1;
2151 21 : guard->last_tried_to_connect = approx_time();
2152 21 : *state_out = GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD;
2153 21 : log_info(LD_GUARD, "No primary guards available. Selected confirmed "
2154 : "guard %s for circuit. Will try other guards before using "
2155 : "this circuit.",
2156 : entry_guard_describe(guard));
2157 21 : return guard;
2158 : }
2159 375 : } SMARTLIST_FOREACH_END(guard);
2160 :
2161 : return NULL;
2162 : }
2163 :
2164 : /**
2165 : * For use with a circuit, pick a usable filtered guard. Update the
2166 : * <b>last_tried_to_connect</b> time and the <b>is_pending</b> fields of the
2167 : * guard as appropriate. Set <b>state_out</b> to the new guard-state of the
2168 : * circuit.
2169 : */
2170 : static entry_guard_t *
2171 78 : select_filtered_guard_for_circuit(guard_selection_t *gs,
2172 : guard_usage_t usage,
2173 : const entry_guard_restriction_t *rst,
2174 : unsigned *state_out)
2175 : {
2176 78 : const int need_descriptor = (usage == GUARD_USAGE_TRAFFIC);
2177 78 : entry_guard_t *chosen_guard = NULL;
2178 78 : unsigned flags = 0;
2179 78 : if (need_descriptor)
2180 75 : flags |= SAMPLE_EXCLUDE_NO_DESCRIPTOR;
2181 78 : chosen_guard = first_reachable_filtered_entry_guard(gs,
2182 : rst,
2183 : SAMPLE_EXCLUDE_CONFIRMED |
2184 : SAMPLE_EXCLUDE_PRIMARY |
2185 : SAMPLE_EXCLUDE_PENDING |
2186 : flags);
2187 78 : if (!chosen_guard) {
2188 : return NULL;
2189 : }
2190 :
2191 72 : chosen_guard->is_pending = 1;
2192 72 : chosen_guard->last_tried_to_connect = approx_time();
2193 72 : *state_out = GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD;
2194 72 : log_info(LD_GUARD, "No primary or confirmed guards available. Selected "
2195 : "guard %s for circuit. Will try other guards before "
2196 : "using this circuit.",
2197 : entry_guard_describe(chosen_guard));
2198 72 : return chosen_guard;
2199 : }
2200 :
2201 : /**
2202 : * Get a guard for use with a circuit. Prefer to pick a running primary
2203 : * guard; then a non-pending running filtered confirmed guard; then a
2204 : * non-pending runnable filtered guard. Update the
2205 : * <b>last_tried_to_connect</b> time and the <b>is_pending</b> fields of the
2206 : * guard as appropriate. Set <b>state_out</b> to the new guard-state
2207 : * of the circuit.
2208 : */
2209 : STATIC entry_guard_t *
2210 256 : select_entry_guard_for_circuit(guard_selection_t *gs,
2211 : guard_usage_t usage,
2212 : const entry_guard_restriction_t *rst,
2213 : unsigned *state_out)
2214 : {
2215 256 : entry_guard_t *chosen_guard = NULL;
2216 256 : tor_assert(gs);
2217 256 : tor_assert(state_out);
2218 :
2219 256 : if (!gs->primary_guards_up_to_date)
2220 144 : entry_guards_update_primary(gs);
2221 :
2222 : /* "If any entry in PRIMARY_GUARDS has {is_reachable} status of
2223 : <maybe> or <yes>, return the first such guard." */
2224 256 : chosen_guard = select_primary_guard_for_circuit(gs, usage, rst, state_out);
2225 256 : if (chosen_guard)
2226 : return chosen_guard;
2227 :
2228 : /* "Otherwise, if the ordered intersection of {CONFIRMED_GUARDS}
2229 : and {USABLE_FILTERED_GUARDS} is nonempty, return the first
2230 : entry in that intersection that has {is_pending} set to
2231 : false." */
2232 99 : chosen_guard = select_confirmed_guard_for_circuit(gs, usage, rst, state_out);
2233 99 : if (chosen_guard)
2234 : return chosen_guard;
2235 :
2236 : /* "Otherwise, if there is no such entry, select a member
2237 : * {USABLE_FILTERED_GUARDS} following the sample ordering" */
2238 78 : chosen_guard = select_filtered_guard_for_circuit(gs, usage, rst, state_out);
2239 :
2240 78 : if (chosen_guard == NULL) {
2241 6 : log_info(LD_GUARD, "Absolutely no sampled guards were available. "
2242 : "Marking all guards for retry and starting from top again.");
2243 6 : mark_all_guards_maybe_reachable(gs);
2244 6 : return NULL;
2245 : }
2246 :
2247 : return chosen_guard;
2248 : }
2249 :
2250 : /**
2251 : * Note that we failed to connect to or build circuits through <b>guard</b>.
2252 : * Use with a guard returned by select_entry_guard_for_circuit().
2253 : */
2254 : STATIC void
2255 120 : entry_guards_note_guard_failure(guard_selection_t *gs,
2256 : entry_guard_t *guard)
2257 : {
2258 120 : tor_assert(gs);
2259 :
2260 120 : guard->is_reachable = GUARD_REACHABLE_NO;
2261 120 : guard->is_usable_filtered_guard = 0;
2262 :
2263 120 : guard->is_pending = 0;
2264 120 : if (guard->failing_since == 0)
2265 120 : guard->failing_since = approx_time();
2266 :
2267 : /* This guard not reachable: send GUARD DOWN event */
2268 120 : control_event_guard(guard->nickname, guard->identity, "DOWN");
2269 :
2270 129 : log_info(LD_GUARD, "Recorded failure for %s%sguard %s",
2271 : guard->is_primary?"primary ":"",
2272 : guard->confirmed_idx>=0?"confirmed ":"",
2273 : entry_guard_describe(guard));
2274 120 : }
2275 :
2276 : /**
2277 : * Note that we successfully connected to, and built a circuit through
2278 : * <b>guard</b>. Given the old guard-state of the circuit in <b>old_state</b>,
2279 : * return the new guard-state of the circuit.
2280 : *
2281 : * Be aware: the circuit is only usable when its guard-state becomes
2282 : * GUARD_CIRC_STATE_COMPLETE.
2283 : **/
2284 : STATIC unsigned
2285 54 : entry_guards_note_guard_success(guard_selection_t *gs,
2286 : entry_guard_t *guard,
2287 : unsigned old_state)
2288 : {
2289 54 : tor_assert(gs);
2290 :
2291 : /* Save this, since we're about to overwrite it. */
2292 54 : const time_t last_time_on_internet = gs->last_time_on_internet;
2293 54 : gs->last_time_on_internet = approx_time();
2294 :
2295 : /* If guard was not already marked as reachable, send a GUARD UP signal */
2296 54 : if (guard->is_reachable != GUARD_REACHABLE_YES) {
2297 54 : control_event_guard(guard->nickname, guard->identity, "UP");
2298 : }
2299 :
2300 54 : guard->is_reachable = GUARD_REACHABLE_YES;
2301 54 : guard->failing_since = 0;
2302 54 : guard->is_pending = 0;
2303 54 : if (guard->is_filtered_guard)
2304 54 : guard->is_usable_filtered_guard = 1;
2305 :
2306 54 : if (guard->confirmed_idx < 0) {
2307 51 : make_guard_confirmed(gs, guard);
2308 51 : if (!gs->primary_guards_up_to_date)
2309 51 : entry_guards_update_primary(gs);
2310 : }
2311 :
2312 54 : unsigned new_state;
2313 54 : switch (old_state) {
2314 : case GUARD_CIRC_STATE_COMPLETE:
2315 : case GUARD_CIRC_STATE_USABLE_ON_COMPLETION:
2316 : new_state = GUARD_CIRC_STATE_COMPLETE;
2317 : break;
2318 0 : default:
2319 0 : tor_assert_nonfatal_unreached();
2320 45 : FALLTHROUGH_UNLESS_ALL_BUGS_ARE_FATAL;
2321 45 : case GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD:
2322 45 : if (guard->is_primary) {
2323 : /* XXXX #20832 -- I don't actually like this logic. It seems to make
2324 : * us a little more susceptible to evil-ISP attacks. The mitigations
2325 : * I'm thinking of, however, aren't local to this point, so I'll leave
2326 : * it alone. */
2327 : /* This guard may have become primary by virtue of being confirmed.
2328 : * If so, the circuit for it is now complete.
2329 : */
2330 : new_state = GUARD_CIRC_STATE_COMPLETE;
2331 : } else {
2332 42 : new_state = GUARD_CIRC_STATE_WAITING_FOR_BETTER_GUARD;
2333 : }
2334 : break;
2335 : }
2336 :
2337 54 : if (! guard->is_primary) {
2338 84 : if (last_time_on_internet + get_internet_likely_down_interval()
2339 42 : < approx_time()) {
2340 3 : mark_primary_guards_maybe_reachable(gs);
2341 : }
2342 : }
2343 :
2344 96 : log_info(LD_GUARD, "Recorded success for %s%sguard %s",
2345 : guard->is_primary?"primary ":"",
2346 : guard->confirmed_idx>=0?"confirmed ":"",
2347 : entry_guard_describe(guard));
2348 :
2349 54 : return new_state;
2350 : }
2351 :
2352 : /**
2353 : * Helper: Return true iff <b>a</b> has higher priority than <b>b</b>.
2354 : */
2355 : STATIC int
2356 64 : entry_guard_has_higher_priority(entry_guard_t *a, entry_guard_t *b)
2357 : {
2358 64 : tor_assert(a && b);
2359 64 : if (a == b)
2360 : return 0;
2361 :
2362 : /* Confirmed is always better than unconfirmed; lower index better
2363 : than higher */
2364 42 : if (a->confirmed_idx < 0) {
2365 12 : if (b->confirmed_idx >= 0)
2366 : return 0;
2367 : } else {
2368 30 : if (b->confirmed_idx < 0)
2369 : return 1;
2370 :
2371 : /* Lower confirmed_idx is better than higher. */
2372 29 : return (a->confirmed_idx < b->confirmed_idx);
2373 : }
2374 :
2375 : /* If we reach this point, both are unconfirmed. If one is pending, it
2376 : * has higher priority. */
2377 8 : if (a->is_pending) {
2378 5 : if (! b->is_pending)
2379 : return 1;
2380 :
2381 : /* Both are pending: earlier last_tried_connect wins. */
2382 4 : return a->last_tried_to_connect < b->last_tried_to_connect;
2383 : } else {
2384 3 : if (b->is_pending)
2385 : return 0;
2386 :
2387 : /* Neither is pending: priorities are equal. */
2388 : return 0;
2389 : }
2390 : }
2391 :
2392 : /** Release all storage held in <b>restriction</b> */
2393 : STATIC void
2394 202 : entry_guard_restriction_free_(entry_guard_restriction_t *rst)
2395 : {
2396 202 : tor_free(rst);
2397 202 : }
2398 :
2399 : /**
2400 : * Release all storage held in <b>state</b>.
2401 : */
2402 : void
2403 320 : circuit_guard_state_free_(circuit_guard_state_t *state)
2404 : {
2405 320 : if (!state)
2406 : return;
2407 196 : entry_guard_restriction_free(state->restrictions);
2408 196 : entry_guard_handle_free(state->guard);
2409 196 : tor_free(state);
2410 : }
2411 :
2412 : /** Allocate and return a new circuit_guard_state_t to track the result
2413 : * of using <b>guard</b> for a given operation. */
2414 196 : MOCK_IMPL(STATIC circuit_guard_state_t *,
2415 : circuit_guard_state_new,(entry_guard_t *guard, unsigned state,
2416 : entry_guard_restriction_t *rst))
2417 : {
2418 196 : circuit_guard_state_t *result;
2419 :
2420 196 : result = tor_malloc_zero(sizeof(circuit_guard_state_t));
2421 196 : result->guard = entry_guard_handle_new(guard);
2422 196 : result->state = state;
2423 196 : result->state_set_at = approx_time();
2424 196 : result->restrictions = rst;
2425 :
2426 196 : return result;
2427 : }
2428 :
2429 : /**
2430 : * Pick a suitable entry guard for a circuit in, and place that guard
2431 : * in *<b>chosen_node_out</b>. Set *<b>guard_state_out</b> to an opaque
2432 : * state object that will record whether the circuit is ready to be used
2433 : * or not. Return 0 on success; on failure, return -1.
2434 : *
2435 : * If a restriction is provided in <b>rst</b>, do not return any guards that
2436 : * violate it, and remember that restriction in <b>guard_state_out</b> for
2437 : * later use. (Takes ownership of the <b>rst</b> object.)
2438 : */
2439 : int
2440 196 : entry_guard_pick_for_circuit(guard_selection_t *gs,
2441 : guard_usage_t usage,
2442 : entry_guard_restriction_t *rst,
2443 : const node_t **chosen_node_out,
2444 : circuit_guard_state_t **guard_state_out)
2445 : {
2446 196 : tor_assert(gs);
2447 196 : tor_assert(chosen_node_out);
2448 196 : tor_assert(guard_state_out);
2449 196 : *chosen_node_out = NULL;
2450 196 : *guard_state_out = NULL;
2451 :
2452 196 : unsigned state = 0;
2453 196 : entry_guard_t *guard =
2454 196 : select_entry_guard_for_circuit(gs, usage, rst, &state);
2455 196 : if (! guard)
2456 0 : goto fail;
2457 196 : if (BUG(state == 0))
2458 0 : goto fail;
2459 196 : const node_t *node = node_get_by_id(guard->identity);
2460 : // XXXX #20827 check Ed ID.
2461 196 : if (! node)
2462 0 : goto fail;
2463 196 : if (BUG(usage != GUARD_USAGE_DIRGUARD &&
2464 : !node_has_preferred_descriptor(node, 1)))
2465 0 : goto fail;
2466 :
2467 196 : *chosen_node_out = node;
2468 196 : *guard_state_out = circuit_guard_state_new(guard, state, rst);
2469 :
2470 196 : return 0;
2471 0 : fail:
2472 0 : entry_guard_restriction_free(rst);
2473 0 : return -1;
2474 : }
2475 :
2476 : /**
2477 : * Called by the circuit building module when a circuit has succeeded: informs
2478 : * the guards code that the guard in *<b>guard_state_p</b> is working, and
2479 : * advances the state of the guard module. On a GUARD_USABLE_NEVER return
2480 : * value, the circuit is broken and should not be used. On a GUARD_USABLE_NOW
2481 : * return value, the circuit is ready to use. On a GUARD_MAYBE_USABLE_LATER
2482 : * return value, the circuit should not be used until we find out whether
2483 : * preferred guards will work for us.
2484 : */
2485 : guard_usable_t
2486 54 : entry_guard_succeeded(circuit_guard_state_t **guard_state_p)
2487 : {
2488 54 : if (BUG(*guard_state_p == NULL))
2489 0 : return GUARD_USABLE_NEVER;
2490 :
2491 54 : entry_guard_t *guard = entry_guard_handle_get((*guard_state_p)->guard);
2492 54 : if (! guard || BUG(guard->in_selection == NULL))
2493 0 : return GUARD_USABLE_NEVER;
2494 :
2495 54 : unsigned newstate =
2496 108 : entry_guards_note_guard_success(guard->in_selection, guard,
2497 54 : (*guard_state_p)->state);
2498 :
2499 54 : (*guard_state_p)->state = newstate;
2500 54 : (*guard_state_p)->state_set_at = approx_time();
2501 :
2502 54 : if (newstate == GUARD_CIRC_STATE_COMPLETE) {
2503 : return GUARD_USABLE_NOW;
2504 : } else {
2505 42 : return GUARD_MAYBE_USABLE_LATER;
2506 : }
2507 : }
2508 :
2509 : /** Cancel the selection of *<b>guard_state_p</b> without declaring
2510 : * success or failure. It is safe to call this function if success or
2511 : * failure _has_ already been declared. */
2512 : void
2513 64 : entry_guard_cancel(circuit_guard_state_t **guard_state_p)
2514 : {
2515 64 : if (BUG(*guard_state_p == NULL))
2516 0 : return;
2517 64 : entry_guard_t *guard = entry_guard_handle_get((*guard_state_p)->guard);
2518 64 : if (! guard)
2519 : return;
2520 :
2521 : /* XXXX prop271 -- last_tried_to_connect_at will be erroneous here, but this
2522 : * function will only get called in "bug" cases anyway. */
2523 10 : guard->is_pending = 0;
2524 10 : circuit_guard_state_free(*guard_state_p);
2525 10 : *guard_state_p = NULL;
2526 : }
2527 :
2528 : /**
2529 : * Called by the circuit building module when a circuit has failed:
2530 : * informs the guards code that the guard in *<b>guard_state_p</b> is
2531 : * not working, and advances the state of the guard module.
2532 : */
2533 : void
2534 111 : entry_guard_failed(circuit_guard_state_t **guard_state_p)
2535 : {
2536 111 : if (BUG(*guard_state_p == NULL))
2537 0 : return;
2538 :
2539 111 : entry_guard_t *guard = entry_guard_handle_get((*guard_state_p)->guard);
2540 111 : if (! guard || BUG(guard->in_selection == NULL))
2541 0 : return;
2542 :
2543 111 : entry_guards_note_guard_failure(guard->in_selection, guard);
2544 :
2545 111 : (*guard_state_p)->state = GUARD_CIRC_STATE_DEAD;
2546 111 : (*guard_state_p)->state_set_at = approx_time();
2547 : }
2548 :
2549 : /**
2550 : * Run the entry_guard_failed() function on every circuit that is
2551 : * pending on <b>chan</b>.
2552 : */
2553 : void
2554 5 : entry_guard_chan_failed(channel_t *chan)
2555 : {
2556 5 : if (!chan)
2557 5 : return;
2558 :
2559 0 : smartlist_t *pending = smartlist_new();
2560 0 : circuit_get_all_pending_on_channel(pending, chan);
2561 0 : SMARTLIST_FOREACH_BEGIN(pending, circuit_t *, circ) {
2562 0 : if (!CIRCUIT_IS_ORIGIN(circ))
2563 0 : continue;
2564 :
2565 0 : origin_circuit_t *origin_circ = TO_ORIGIN_CIRCUIT(circ);
2566 0 : if (origin_circ->guard_state) {
2567 : /* We might have no guard state if we didn't use a guard on this
2568 : * circuit (eg it's for a fallback directory). */
2569 0 : entry_guard_failed(&origin_circ->guard_state);
2570 : }
2571 0 : } SMARTLIST_FOREACH_END(circ);
2572 0 : smartlist_free(pending);
2573 : }
2574 :
2575 : /**
2576 : * Return true iff every primary guard in <b>gs</b> is believed to
2577 : * be unreachable.
2578 : */
2579 : STATIC int
2580 43 : entry_guards_all_primary_guards_are_down(guard_selection_t *gs)
2581 : {
2582 43 : tor_assert(gs);
2583 43 : if (!gs->primary_guards_up_to_date)
2584 10 : entry_guards_update_primary(gs);
2585 151 : SMARTLIST_FOREACH_BEGIN(gs->primary_entry_guards, entry_guard_t *, guard) {
2586 114 : entry_guard_consider_retry(guard);
2587 114 : if (guard->is_reachable != GUARD_REACHABLE_NO)
2588 : return 0;
2589 108 : } SMARTLIST_FOREACH_END(guard);
2590 : return 1;
2591 : }
2592 :
2593 : /** Wrapper for entry_guard_has_higher_priority that compares the
2594 : * guard-priorities of a pair of circuits. Return 1 if <b>a</b> has higher
2595 : * priority than <b>b</b>.
2596 : *
2597 : * If a restriction is provided in <b>rst</b>, then do not consider
2598 : * <b>a</b> to have higher priority if it violates the restriction.
2599 : */
2600 : static int
2601 57 : circ_state_has_higher_priority(origin_circuit_t *a,
2602 : const entry_guard_restriction_t *rst,
2603 : origin_circuit_t *b)
2604 : {
2605 57 : circuit_guard_state_t *state_a = origin_circuit_get_guard_state(a);
2606 57 : circuit_guard_state_t *state_b = origin_circuit_get_guard_state(b);
2607 :
2608 57 : tor_assert(state_a);
2609 57 : tor_assert(state_b);
2610 :
2611 57 : entry_guard_t *guard_a = entry_guard_handle_get(state_a->guard);
2612 57 : entry_guard_t *guard_b = entry_guard_handle_get(state_b->guard);
2613 :
2614 57 : if (! guard_a) {
2615 : /* Unknown guard -- never higher priority. */
2616 : return 0;
2617 57 : } else if (! guard_b) {
2618 : /* Known guard -- higher priority than any unknown guard. */
2619 : return 1;
2620 57 : } else if (! entry_guard_obeys_restriction(guard_a, rst)) {
2621 : /* Restriction violated; guard_a cannot have higher priority. */
2622 : return 0;
2623 : } else {
2624 : /* Both known -- compare.*/
2625 51 : return entry_guard_has_higher_priority(guard_a, guard_b);
2626 : }
2627 : }
2628 :
2629 : /**
2630 : * Look at all of the origin_circuit_t * objects in <b>all_circuits_in</b>,
2631 : * and see if any of them that were previously not ready to use for
2632 : * guard-related reasons are now ready to use. Place those circuits
2633 : * in <b>newly_complete_out</b>, and mark them COMPLETE.
2634 : *
2635 : * Return 1 if we upgraded any circuits, and 0 otherwise.
2636 : */
2637 : int
2638 34 : entry_guards_upgrade_waiting_circuits(guard_selection_t *gs,
2639 : const smartlist_t *all_circuits_in,
2640 : smartlist_t *newly_complete_out)
2641 : {
2642 34 : tor_assert(gs);
2643 34 : tor_assert(all_circuits_in);
2644 34 : tor_assert(newly_complete_out);
2645 :
2646 34 : if (! entry_guards_all_primary_guards_are_down(gs)) {
2647 : /* We only upgrade a waiting circuit if the primary guards are all
2648 : * down. */
2649 3 : log_debug(LD_GUARD, "Considered upgrading guard-stalled circuits, "
2650 : "but not all primary guards were definitely down.");
2651 3 : return 0;
2652 : }
2653 :
2654 31 : int n_waiting = 0;
2655 31 : int n_complete = 0;
2656 31 : int n_complete_blocking = 0;
2657 31 : origin_circuit_t *best_waiting_circuit = NULL;
2658 31 : smartlist_t *all_circuits = smartlist_new();
2659 92 : SMARTLIST_FOREACH_BEGIN(all_circuits_in, origin_circuit_t *, circ) {
2660 : // We filter out circuits that aren't ours, or which we can't
2661 : // reason about.
2662 61 : circuit_guard_state_t *state = origin_circuit_get_guard_state(circ);
2663 61 : if (state == NULL)
2664 0 : continue;
2665 61 : entry_guard_t *guard = entry_guard_handle_get(state->guard);
2666 61 : if (!guard || guard->in_selection != gs)
2667 0 : continue;
2668 61 : if (TO_CIRCUIT(circ)->marked_for_close) {
2669 : /* Don't consider any marked for close circuits. */
2670 1 : continue;
2671 : }
2672 :
2673 60 : smartlist_add(all_circuits, circ);
2674 61 : } SMARTLIST_FOREACH_END(circ);
2675 :
2676 91 : SMARTLIST_FOREACH_BEGIN(all_circuits, origin_circuit_t *, circ) {
2677 60 : circuit_guard_state_t *state = origin_circuit_get_guard_state(circ);
2678 60 : if (BUG(state == NULL))
2679 0 : continue;
2680 :
2681 60 : if (state->state == GUARD_CIRC_STATE_WAITING_FOR_BETTER_GUARD) {
2682 36 : ++n_waiting;
2683 45 : if (! best_waiting_circuit ||
2684 9 : circ_state_has_higher_priority(circ, NULL, best_waiting_circuit)) {
2685 : best_waiting_circuit = circ;
2686 : }
2687 : }
2688 60 : } SMARTLIST_FOREACH_END(circ);
2689 :
2690 31 : if (! best_waiting_circuit) {
2691 4 : log_debug(LD_GUARD, "Considered upgrading guard-stalled circuits, "
2692 : "but didn't find any.");
2693 4 : goto no_change;
2694 : }
2695 :
2696 : /* We'll need to keep track of what restrictions were used when picking this
2697 : * circuit, so that we don't allow any circuit without those restrictions to
2698 : * block it. */
2699 54 : const entry_guard_restriction_t *rst_on_best_waiting =
2700 27 : origin_circuit_get_guard_state(best_waiting_circuit)->restrictions;
2701 :
2702 : /* First look at the complete circuits: Do any block this circuit? */
2703 81 : SMARTLIST_FOREACH_BEGIN(all_circuits, origin_circuit_t *, circ) {
2704 : /* "C2 "blocks" C1 if:
2705 : * C2 obeys all the restrictions that C1 had to obey, AND
2706 : * C2 has higher priority than C1, AND
2707 : * Either C2 is <complete>, or C2 is <waiting_for_better_guard>,
2708 : or C2 has been <usable_if_no_better_guard> for no more than
2709 : {NONPRIMARY_GUARD_CONNECT_TIMEOUT} seconds."
2710 : */
2711 54 : circuit_guard_state_t *state = origin_circuit_get_guard_state(circ);
2712 54 : if BUG((state == NULL))
2713 0 : continue;
2714 54 : if (state->state != GUARD_CIRC_STATE_COMPLETE)
2715 45 : continue;
2716 9 : ++n_complete;
2717 9 : if (circ_state_has_higher_priority(circ, rst_on_best_waiting,
2718 : best_waiting_circuit))
2719 3 : ++n_complete_blocking;
2720 54 : } SMARTLIST_FOREACH_END(circ);
2721 :
2722 27 : if (n_complete_blocking) {
2723 3 : log_debug(LD_GUARD, "Considered upgrading guard-stalled circuits: found "
2724 : "%d complete and %d guard-stalled. At least one complete "
2725 : "circuit had higher priority, so not upgrading.",
2726 : n_complete, n_waiting);
2727 3 : goto no_change;
2728 : }
2729 :
2730 : /* " * If any circuit C1 is <waiting_for_better_guard>, AND:
2731 : * All primary guards have reachable status of <no>.
2732 : * There is no circuit C2 that "blocks" C1.
2733 : Then, upgrade C1 to <complete>.""
2734 : */
2735 24 : int n_blockers_found = 0;
2736 48 : const time_t state_set_at_cutoff =
2737 24 : approx_time() - get_nonprimary_guard_connect_timeout();
2738 72 : SMARTLIST_FOREACH_BEGIN(all_circuits, origin_circuit_t *, circ) {
2739 48 : circuit_guard_state_t *state = origin_circuit_get_guard_state(circ);
2740 48 : if (BUG(state == NULL))
2741 0 : continue;
2742 48 : if (state->state != GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD)
2743 39 : continue;
2744 9 : if (state->state_set_at <= state_set_at_cutoff)
2745 0 : continue;
2746 9 : if (circ_state_has_higher_priority(circ, rst_on_best_waiting,
2747 : best_waiting_circuit))
2748 3 : ++n_blockers_found;
2749 48 : } SMARTLIST_FOREACH_END(circ);
2750 :
2751 24 : if (n_blockers_found) {
2752 3 : log_debug(LD_GUARD, "Considered upgrading guard-stalled circuits: found "
2753 : "%d guard-stalled, but %d pending circuit(s) had higher "
2754 : "guard priority, so not upgrading.",
2755 : n_waiting, n_blockers_found);
2756 3 : goto no_change;
2757 : }
2758 :
2759 : /* Okay. We have a best waiting circuit, and we aren't waiting for
2760 : anything better. Add all circuits with that priority to the
2761 : list, and call them COMPLETE. */
2762 21 : int n_succeeded = 0;
2763 63 : SMARTLIST_FOREACH_BEGIN(all_circuits, origin_circuit_t *, circ) {
2764 42 : circuit_guard_state_t *state = origin_circuit_get_guard_state(circ);
2765 42 : if (BUG(state == NULL))
2766 0 : continue;
2767 42 : if (circ != best_waiting_circuit && rst_on_best_waiting) {
2768 : /* Can't upgrade other circ with same priority as best; might
2769 : be blocked. */
2770 6 : continue;
2771 : }
2772 36 : if (state->state != GUARD_CIRC_STATE_WAITING_FOR_BETTER_GUARD)
2773 6 : continue;
2774 30 : if (circ_state_has_higher_priority(best_waiting_circuit, NULL, circ))
2775 9 : continue;
2776 :
2777 21 : state->state = GUARD_CIRC_STATE_COMPLETE;
2778 21 : state->state_set_at = approx_time();
2779 21 : smartlist_add(newly_complete_out, circ);
2780 21 : ++n_succeeded;
2781 42 : } SMARTLIST_FOREACH_END(circ);
2782 :
2783 21 : log_info(LD_GUARD, "Considered upgrading guard-stalled circuits: found "
2784 : "%d guard-stalled, %d complete. %d of the guard-stalled "
2785 : "circuit(s) had high enough priority to upgrade.",
2786 : n_waiting, n_complete, n_succeeded);
2787 :
2788 21 : tor_assert_nonfatal(n_succeeded >= 1);
2789 21 : smartlist_free(all_circuits);
2790 21 : return 1;
2791 :
2792 10 : no_change:
2793 10 : smartlist_free(all_circuits);
2794 10 : return 0;
2795 : }
2796 :
2797 : /**
2798 : * Return true iff the circuit whose state is <b>guard_state</b> should
2799 : * expire.
2800 : */
2801 : int
2802 4 : entry_guard_state_should_expire(circuit_guard_state_t *guard_state)
2803 : {
2804 4 : if (guard_state == NULL)
2805 : return 0;
2806 6 : const time_t expire_if_waiting_since =
2807 3 : approx_time() - get_nonprimary_guard_idle_timeout();
2808 3 : return (guard_state->state == GUARD_CIRC_STATE_WAITING_FOR_BETTER_GUARD
2809 3 : && guard_state->state_set_at < expire_if_waiting_since);
2810 : }
2811 :
2812 : /**
2813 : * Update all derived pieces of the guard selection state in <b>gs</b>.
2814 : * Return true iff we should stop using all previously generated circuits.
2815 : */
2816 : int
2817 9 : entry_guards_update_all(guard_selection_t *gs)
2818 : {
2819 9 : sampled_guards_update_from_consensus(gs);
2820 9 : entry_guards_update_filtered_sets(gs);
2821 9 : entry_guards_update_confirmed(gs);
2822 9 : entry_guards_update_primary(gs);
2823 9 : return 0;
2824 : }
2825 :
2826 : /**
2827 : * Return a newly allocated string for encoding the persistent parts of
2828 : * <b>guard</b> to the state file. <b>dense_sampled_idx</b> refers to the
2829 : * sampled_idx made dense for this <b>guard</b>. Encoding all guards should
2830 : * lead to a dense array of sampled_idx in the state file.
2831 : */
2832 : STATIC char *
2833 9 : entry_guard_encode_for_state(entry_guard_t *guard, int dense_sampled_idx)
2834 : {
2835 : /*
2836 : * The meta-format we use is K=V K=V K=V... where K can be any
2837 : * characters excepts space and =, and V can be any characters except
2838 : * space. The order of entries is not allowed to matter.
2839 : * Unrecognized K=V entries are persisted; recognized but erroneous
2840 : * entries are corrected.
2841 : */
2842 :
2843 9 : smartlist_t *result = smartlist_new();
2844 9 : char tbuf[ISO_TIME_LEN+1];
2845 :
2846 9 : tor_assert(guard);
2847 :
2848 9 : smartlist_add_asprintf(result, "in=%s", guard->selection_name);
2849 9 : smartlist_add_asprintf(result, "rsa_id=%s",
2850 9 : hex_str(guard->identity, DIGEST_LEN));
2851 9 : if (guard->bridge_addr) {
2852 3 : smartlist_add_asprintf(result, "bridge_addr=%s:%d",
2853 3 : fmt_and_decorate_addr(&guard->bridge_addr->addr),
2854 3 : guard->bridge_addr->port);
2855 : }
2856 9 : if (strlen(guard->nickname) && is_legal_nickname(guard->nickname)) {
2857 6 : smartlist_add_asprintf(result, "nickname=%s", guard->nickname);
2858 : }
2859 :
2860 9 : format_iso_time_nospace(tbuf, guard->sampled_on_date);
2861 9 : smartlist_add_asprintf(result, "sampled_on=%s", tbuf);
2862 : // Replacing the sampled_idx by dense array
2863 9 : smartlist_add_asprintf(result, "sampled_idx=%d", dense_sampled_idx);
2864 9 : if (guard->sampled_by_version) {
2865 8 : smartlist_add_asprintf(result, "sampled_by=%s",
2866 : guard->sampled_by_version);
2867 : }
2868 :
2869 9 : if (guard->unlisted_since_date > 0) {
2870 1 : format_iso_time_nospace(tbuf, guard->unlisted_since_date);
2871 1 : smartlist_add_asprintf(result, "unlisted_since=%s", tbuf);
2872 : }
2873 :
2874 9 : smartlist_add_asprintf(result, "listed=%d",
2875 9 : (int)guard->currently_listed);
2876 :
2877 9 : if (guard->confirmed_idx >= 0) {
2878 4 : format_iso_time_nospace(tbuf, guard->confirmed_on_date);
2879 4 : smartlist_add_asprintf(result, "confirmed_on=%s", tbuf);
2880 :
2881 4 : smartlist_add_asprintf(result, "confirmed_idx=%d", guard->confirmed_idx);
2882 : }
2883 :
2884 9 : const double EPSILON = 1.0e-6;
2885 :
2886 : /* Make a copy of the pathbias object, since we will want to update
2887 : some of them */
2888 9 : guard_pathbias_t *pb = tor_memdup(&guard->pb, sizeof(*pb));
2889 9 : pb->use_successes = pathbias_get_use_success_count(guard);
2890 9 : pb->successful_circuits_closed = pathbias_get_close_success_count(guard);
2891 :
2892 : #define PB_FIELD(field) do { \
2893 : if (pb->field >= EPSILON) { \
2894 : smartlist_add_asprintf(result, "pb_" #field "=%f", pb->field); \
2895 : } \
2896 : } while (0)
2897 9 : PB_FIELD(use_attempts);
2898 9 : PB_FIELD(use_successes);
2899 9 : PB_FIELD(circ_attempts);
2900 9 : PB_FIELD(circ_successes);
2901 9 : PB_FIELD(successful_circuits_closed);
2902 9 : PB_FIELD(collapsed_circuits);
2903 9 : PB_FIELD(unusable_circuits);
2904 9 : PB_FIELD(timeouts);
2905 9 : tor_free(pb);
2906 : #undef PB_FIELD
2907 :
2908 9 : if (guard->extra_state_fields)
2909 1 : smartlist_add_strdup(result, guard->extra_state_fields);
2910 :
2911 9 : char *joined = smartlist_join_strings(result, " ", 0, NULL);
2912 90 : SMARTLIST_FOREACH(result, char *, cp, tor_free(cp));
2913 9 : smartlist_free(result);
2914 :
2915 9 : return joined;
2916 : }
2917 :
2918 : /**
2919 : * Extract key=val from the state string <b>s</b> and duplicate the value to
2920 : * some string target declared in entry_guard_parse_from_state
2921 : */
2922 : static void
2923 38 : parse_from_state_set_vals(const char *s, smartlist_t *entries, smartlist_t
2924 : *extra, strmap_t *vals)
2925 : {
2926 38 : smartlist_split_string(entries, s, " ",
2927 : SPLIT_SKIP_SPACE|SPLIT_IGNORE_BLANK, 0);
2928 :
2929 356 : SMARTLIST_FOREACH_BEGIN(entries, char *, entry) {
2930 318 : const char *eq = strchr(entry, '=');
2931 318 : if (!eq) {
2932 18 : smartlist_add(extra, entry);
2933 18 : continue;
2934 : }
2935 300 : char *key = tor_strndup(entry, eq-entry);
2936 300 : char **target = strmap_get(vals, key);
2937 300 : if (target == NULL || *target != NULL) {
2938 : /* unrecognized or already set */
2939 2 : smartlist_add(extra, entry);
2940 2 : tor_free(key);
2941 2 : continue;
2942 : }
2943 :
2944 298 : *target = tor_strdup(eq+1);
2945 298 : tor_free(key);
2946 298 : tor_free(entry);
2947 318 : } SMARTLIST_FOREACH_END(entry);
2948 38 : }
2949 :
2950 : /**
2951 : * Handle part of the parsing state file logic, focused on time related things
2952 : */
2953 : static void
2954 31 : parse_from_state_handle_time(entry_guard_t *guard, char *sampled_on, char
2955 : *unlisted_since, char *confirmed_on)
2956 : {
2957 : #define HANDLE_TIME(field) do { \
2958 : if (field) { \
2959 : int r = parse_iso_time_nospace(field, &field ## _time); \
2960 : if (r < 0) { \
2961 : log_warn(LD_CIRC, "Unable to parse %s %s from guard", \
2962 : #field, escaped(field)); \
2963 : field##_time = -1; \
2964 : } \
2965 : } \
2966 : } while (0)
2967 :
2968 31 : time_t sampled_on_time = 0;
2969 31 : time_t unlisted_since_time = 0;
2970 31 : time_t confirmed_on_time = 0;
2971 :
2972 31 : HANDLE_TIME(sampled_on);
2973 31 : HANDLE_TIME(unlisted_since);
2974 31 : HANDLE_TIME(confirmed_on);
2975 :
2976 31 : if (sampled_on_time <= 0)
2977 2 : sampled_on_time = approx_time();
2978 31 : if (unlisted_since_time < 0)
2979 1 : unlisted_since_time = 0;
2980 31 : if (confirmed_on_time < 0)
2981 1 : confirmed_on_time = 0;
2982 :
2983 : #undef HANDLE_TIME
2984 :
2985 31 : guard->sampled_on_date = sampled_on_time;
2986 31 : guard->unlisted_since_date = unlisted_since_time;
2987 31 : guard->confirmed_on_date = confirmed_on_time;
2988 31 : }
2989 :
2990 : /**
2991 : * Given a string generated by entry_guard_encode_for_state(), parse it
2992 : * (if possible) and return an entry_guard_t object for it. Return NULL
2993 : * on complete failure.
2994 : */
2995 : STATIC entry_guard_t *
2996 38 : entry_guard_parse_from_state(const char *s)
2997 : {
2998 : /* Unrecognized entries get put in here. */
2999 38 : smartlist_t *extra = smartlist_new();
3000 :
3001 : /* These fields get parsed from the string. */
3002 38 : char *in = NULL;
3003 38 : char *rsa_id = NULL;
3004 38 : char *nickname = NULL;
3005 38 : char *sampled_on = NULL;
3006 38 : char *sampled_idx = NULL;
3007 38 : char *sampled_by = NULL;
3008 38 : char *unlisted_since = NULL;
3009 38 : char *listed = NULL;
3010 38 : char *confirmed_on = NULL;
3011 38 : char *confirmed_idx = NULL;
3012 38 : char *bridge_addr = NULL;
3013 :
3014 : // pathbias
3015 38 : char *pb_use_attempts = NULL;
3016 38 : char *pb_use_successes = NULL;
3017 38 : char *pb_circ_attempts = NULL;
3018 38 : char *pb_circ_successes = NULL;
3019 38 : char *pb_successful_circuits_closed = NULL;
3020 38 : char *pb_collapsed_circuits = NULL;
3021 38 : char *pb_unusable_circuits = NULL;
3022 38 : char *pb_timeouts = NULL;
3023 38 : int invalid_sampled_idx = get_max_sample_size_absolute();
3024 :
3025 : /* Split up the entries. Put the ones we know about in strings and the
3026 : * rest in "extra". */
3027 : {
3028 38 : smartlist_t *entries = smartlist_new();
3029 :
3030 38 : strmap_t *vals = strmap_new(); // Maps keyword to location
3031 : #define FIELD(f) \
3032 : strmap_set(vals, #f, &f);
3033 38 : FIELD(in);
3034 38 : FIELD(rsa_id);
3035 38 : FIELD(nickname);
3036 38 : FIELD(sampled_on);
3037 38 : FIELD(sampled_idx);
3038 38 : FIELD(sampled_by);
3039 38 : FIELD(unlisted_since);
3040 38 : FIELD(listed);
3041 38 : FIELD(confirmed_on);
3042 38 : FIELD(confirmed_idx);
3043 38 : FIELD(bridge_addr);
3044 38 : FIELD(pb_use_attempts);
3045 38 : FIELD(pb_use_successes);
3046 38 : FIELD(pb_circ_attempts);
3047 38 : FIELD(pb_circ_successes);
3048 38 : FIELD(pb_successful_circuits_closed);
3049 38 : FIELD(pb_collapsed_circuits);
3050 38 : FIELD(pb_unusable_circuits);
3051 38 : FIELD(pb_timeouts);
3052 : #undef FIELD
3053 : /* Extract from s the key=val that we recognize, put the others in extra*/
3054 38 : parse_from_state_set_vals(s, entries, extra, vals);
3055 :
3056 38 : smartlist_free(entries);
3057 38 : strmap_free(vals, NULL);
3058 : }
3059 :
3060 38 : entry_guard_t *guard = tor_malloc_zero(sizeof(entry_guard_t));
3061 38 : guard->is_persistent = 1;
3062 :
3063 38 : if (in == NULL) {
3064 3 : log_warn(LD_CIRC, "Guard missing 'in' field");
3065 3 : goto err;
3066 : }
3067 :
3068 35 : guard->selection_name = in;
3069 35 : in = NULL;
3070 :
3071 35 : if (rsa_id == NULL) {
3072 1 : log_warn(LD_CIRC, "Guard missing RSA ID field");
3073 1 : goto err;
3074 : }
3075 :
3076 : /* Process the identity and nickname. */
3077 34 : if (base16_decode(guard->identity, sizeof(guard->identity),
3078 : rsa_id, strlen(rsa_id)) != DIGEST_LEN) {
3079 3 : log_warn(LD_CIRC, "Unable to decode guard identity %s", escaped(rsa_id));
3080 3 : goto err;
3081 : }
3082 :
3083 31 : if (nickname) {
3084 24 : strlcpy(guard->nickname, nickname, sizeof(guard->nickname));
3085 : } else {
3086 7 : guard->nickname[0]='$';
3087 7 : base16_encode(guard->nickname+1, sizeof(guard->nickname)-1,
3088 : guard->identity, DIGEST_LEN);
3089 : }
3090 :
3091 31 : if (bridge_addr) {
3092 8 : tor_addr_port_t res;
3093 8 : memset(&res, 0, sizeof(res));
3094 8 : int r = tor_addr_port_parse(LOG_WARN, bridge_addr,
3095 : &res.addr, &res.port, -1);
3096 8 : if (r == 0)
3097 7 : guard->bridge_addr = tor_memdup(&res, sizeof(res));
3098 : /* On error, we already warned. */
3099 : }
3100 :
3101 : /* Process the various time fields. */
3102 31 : parse_from_state_handle_time(guard, sampled_on, unlisted_since,
3103 : confirmed_on);
3104 :
3105 : /* Take sampled_by_version verbatim. */
3106 31 : guard->sampled_by_version = sampled_by;
3107 31 : sampled_by = NULL; /* prevent free */
3108 : /* Listed is a boolean */
3109 31 : if (listed && strcmp(listed, "0"))
3110 29 : guard->currently_listed = 1;
3111 :
3112 : /* The index is a nonnegative integer. */
3113 31 : guard->confirmed_idx = -1;
3114 31 : if (confirmed_idx) {
3115 13 : int ok=1;
3116 13 : long idx = tor_parse_long(confirmed_idx, 10, 0, INT_MAX, &ok, NULL);
3117 13 : if (! ok) {
3118 1 : log_warn(LD_GUARD, "Guard has invalid confirmed_idx %s",
3119 : escaped(confirmed_idx));
3120 : } else {
3121 12 : guard->confirmed_idx = (int)idx;
3122 : }
3123 : }
3124 :
3125 31 : if (sampled_idx) {
3126 24 : int ok = 1;
3127 24 : long idx = tor_parse_long(sampled_idx, 10, 0, INT_MAX, &ok, NULL);
3128 24 : if (!ok) {
3129 0 : log_warn(LD_GUARD, "Guard has invalid sampled_idx %s",
3130 : escaped(sampled_idx));
3131 : /* set it to a idx higher than the max sample size */
3132 0 : guard->sampled_idx = invalid_sampled_idx++;
3133 : } else {
3134 24 : guard->sampled_idx = (int)idx;
3135 : }
3136 7 : } else if (confirmed_idx) {
3137 : /* This state has been written by an older Tor version which did not have
3138 : * sample ordering */
3139 :
3140 4 : guard->sampled_idx = guard->confirmed_idx;
3141 : } else {
3142 3 : log_info(LD_GUARD, "The state file seems to be into a status that could"
3143 : " yield to weird entry node selection: we're missing both a"
3144 : " sampled_idx and a confirmed_idx.");
3145 3 : guard->sampled_idx = invalid_sampled_idx++;
3146 : }
3147 :
3148 : /* Anything we didn't recognize gets crammed together */
3149 31 : if (smartlist_len(extra) > 0) {
3150 2 : guard->extra_state_fields = smartlist_join_strings(extra, " ", 0, NULL);
3151 : }
3152 :
3153 : /* initialize non-persistent fields */
3154 31 : guard->is_reachable = GUARD_REACHABLE_MAYBE;
3155 :
3156 : #define PB_FIELD(field) \
3157 : do { \
3158 : if (pb_ ## field) { \
3159 : int ok = 1; \
3160 : double r = tor_parse_double(pb_ ## field, 0.0, 1e9, &ok, NULL); \
3161 : if (! ok) { \
3162 : log_warn(LD_CIRC, "Guard has invalid pb_%s %s", \
3163 : #field, pb_ ## field); \
3164 : } else { \
3165 : guard->pb.field = r; \
3166 : } \
3167 : } \
3168 : } while (0)
3169 31 : PB_FIELD(use_attempts);
3170 31 : PB_FIELD(use_successes);
3171 31 : PB_FIELD(circ_attempts);
3172 31 : PB_FIELD(circ_successes);
3173 31 : PB_FIELD(successful_circuits_closed);
3174 31 : PB_FIELD(collapsed_circuits);
3175 31 : PB_FIELD(unusable_circuits);
3176 31 : PB_FIELD(timeouts);
3177 : #undef PB_FIELD
3178 :
3179 31 : pathbias_check_use_success_count(guard);
3180 31 : pathbias_check_close_success_count(guard);
3181 :
3182 : /* We update everything on this guard later, after we've parsed
3183 : * everything. */
3184 :
3185 31 : goto done;
3186 :
3187 7 : err:
3188 : // only consider it an error if the guard state was totally unparseable.
3189 7 : entry_guard_free(guard);
3190 7 : guard = NULL;
3191 :
3192 38 : done:
3193 38 : tor_free(in);
3194 38 : tor_free(rsa_id);
3195 38 : tor_free(nickname);
3196 38 : tor_free(sampled_on);
3197 38 : tor_free(sampled_by);
3198 38 : tor_free(unlisted_since);
3199 38 : tor_free(listed);
3200 38 : tor_free(confirmed_on);
3201 38 : tor_free(confirmed_idx);
3202 38 : tor_free(sampled_idx);
3203 38 : tor_free(bridge_addr);
3204 38 : tor_free(pb_use_attempts);
3205 38 : tor_free(pb_use_successes);
3206 38 : tor_free(pb_circ_attempts);
3207 38 : tor_free(pb_circ_successes);
3208 38 : tor_free(pb_successful_circuits_closed);
3209 38 : tor_free(pb_collapsed_circuits);
3210 38 : tor_free(pb_unusable_circuits);
3211 38 : tor_free(pb_timeouts);
3212 :
3213 58 : SMARTLIST_FOREACH(extra, char *, cp, tor_free(cp));
3214 38 : smartlist_free(extra);
3215 :
3216 38 : return guard;
3217 : }
3218 :
3219 : /**
3220 : * Replace the Guards entries in <b>state</b> with a list of all our sampled
3221 : * guards.
3222 : */
3223 : static void
3224 5 : entry_guards_update_guards_in_state(or_state_t *state)
3225 : {
3226 5 : if (!guard_contexts)
3227 0 : return;
3228 5 : config_line_t *lines = NULL;
3229 5 : config_line_t **nextline = &lines;
3230 :
3231 8 : SMARTLIST_FOREACH_BEGIN(guard_contexts, guard_selection_t *, gs) {
3232 3 : int i = 0;
3233 11 : SMARTLIST_FOREACH_BEGIN(gs->sampled_entry_guards, entry_guard_t *, guard) {
3234 8 : if (guard->is_persistent == 0)
3235 1 : continue;
3236 7 : *nextline = tor_malloc_zero(sizeof(config_line_t));
3237 7 : (*nextline)->key = tor_strdup("Guard");
3238 7 : (*nextline)->value = entry_guard_encode_for_state(guard, i);
3239 7 : nextline = &(*nextline)->next;
3240 7 : i++;
3241 8 : } SMARTLIST_FOREACH_END(guard);
3242 3 : } SMARTLIST_FOREACH_END(gs);
3243 :
3244 5 : config_free_lines(state->Guard);
3245 5 : state->Guard = lines;
3246 : }
3247 :
3248 : /**
3249 : * Replace our sampled guards from the Guards entries in <b>state</b>. Return 0
3250 : * on success, -1 on failure. (If <b>set</b> is true, replace nothing -- only
3251 : * check whether replacing would work.)
3252 : */
3253 : static int
3254 17 : entry_guards_load_guards_from_state(or_state_t *state, int set)
3255 : {
3256 17 : const config_line_t *line = state->Guard;
3257 17 : int n_errors = 0;
3258 :
3259 17 : if (!guard_contexts)
3260 6 : guard_contexts = smartlist_new();
3261 :
3262 : /* Wipe all our existing guard info. (we shouldn't have any, but
3263 : * let's be safe.) */
3264 17 : if (set) {
3265 10 : SMARTLIST_FOREACH_BEGIN(guard_contexts, guard_selection_t *, gs) {
3266 3 : guard_selection_free(gs);
3267 3 : if (curr_guard_context == gs)
3268 3 : curr_guard_context = NULL;
3269 3 : SMARTLIST_DEL_CURRENT(guard_contexts, gs);
3270 3 : } SMARTLIST_FOREACH_END(gs);
3271 : }
3272 :
3273 47 : for ( ; line != NULL; line = line->next) {
3274 30 : entry_guard_t *guard = entry_guard_parse_from_state(line->value);
3275 30 : if (guard == NULL) {
3276 2 : ++n_errors;
3277 30 : continue;
3278 : }
3279 28 : tor_assert(guard->selection_name);
3280 28 : if (!strcmp(guard->selection_name, "legacy")) {
3281 2 : ++n_errors;
3282 2 : entry_guard_free(guard);
3283 2 : continue;
3284 : }
3285 :
3286 26 : if (set) {
3287 17 : guard_selection_t *gs;
3288 17 : gs = get_guard_selection_by_name(guard->selection_name,
3289 : GS_TYPE_INFER, 1);
3290 17 : tor_assert(gs);
3291 17 : smartlist_add(gs->sampled_entry_guards, guard);
3292 17 : guard->in_selection = gs;
3293 : /* Recompute the next_sampled_id from the state. We do not assume that
3294 : * sampled guards appear in the correct order within the file, and we
3295 : * need to know what would be the next sampled idx to give to any
3296 : * new sampled guard (i.e., max of guard->sampled_idx + 1)*/
3297 17 : if (gs->next_sampled_idx <= guard->sampled_idx) {
3298 17 : gs->next_sampled_idx = guard->sampled_idx + 1;
3299 : }
3300 :
3301 : } else {
3302 9 : entry_guard_free(guard);
3303 : }
3304 : }
3305 :
3306 17 : if (set) {
3307 14 : SMARTLIST_FOREACH_BEGIN(guard_contexts, guard_selection_t *, gs) {
3308 : /** Guards should be in sample order within the file, but it is maybe
3309 : * better NOT to assume that. Let's order them before updating lists
3310 : */
3311 7 : smartlist_sort(gs->sampled_entry_guards, compare_guards_by_sampled_idx);
3312 7 : entry_guards_update_all(gs);
3313 7 : } SMARTLIST_FOREACH_END(gs);
3314 : }
3315 17 : return n_errors ? -1 : 0;
3316 : }
3317 :
3318 : /** If <b>digest</b> matches the identity of any node in the
3319 : * entry_guards list for the provided guard selection state,
3320 : return that node. Else return NULL. */
3321 : entry_guard_t *
3322 0 : entry_guard_get_by_id_digest_for_guard_selection(guard_selection_t *gs,
3323 : const char *digest)
3324 : {
3325 0 : return get_sampled_guard_with_id(gs, (const uint8_t*)digest);
3326 : }
3327 :
3328 : /** Return the node_t associated with a single entry_guard_t. May
3329 : * return NULL if the guard is not currently in the consensus. */
3330 : const node_t *
3331 0 : entry_guard_find_node(const entry_guard_t *guard)
3332 : {
3333 0 : tor_assert(guard);
3334 0 : return node_get_by_id(guard->identity);
3335 : }
3336 :
3337 : /** If <b>digest</b> matches the identity of any node in the
3338 : * entry_guards list for the default guard selection state,
3339 : return that node. Else return NULL. */
3340 : entry_guard_t *
3341 0 : entry_guard_get_by_id_digest(const char *digest)
3342 : {
3343 0 : return entry_guard_get_by_id_digest_for_guard_selection(
3344 : get_guard_selection_info(), digest);
3345 : }
3346 :
3347 : /** We are about to connect to bridge with identity <b>digest</b> to fetch its
3348 : * descriptor. Create a new guard state for this connection and return it. */
3349 : circuit_guard_state_t *
3350 0 : get_guard_state_for_bridge_desc_fetch(const char *digest)
3351 : {
3352 0 : circuit_guard_state_t *guard_state = NULL;
3353 0 : entry_guard_t *guard = NULL;
3354 :
3355 0 : guard = entry_guard_get_by_id_digest_for_guard_selection(
3356 : get_guard_selection_info(), digest);
3357 0 : if (!guard) {
3358 : return NULL;
3359 : }
3360 :
3361 : /* Update the guard last_tried_to_connect time since it's checked by the
3362 : * guard subsystem. */
3363 0 : guard->last_tried_to_connect = approx_time();
3364 :
3365 : /* Create the guard state */
3366 0 : guard_state = circuit_guard_state_new(guard,
3367 : GUARD_CIRC_STATE_USABLE_ON_COMPLETION,
3368 : NULL);
3369 :
3370 0 : return guard_state;
3371 : }
3372 :
3373 : /** Release all storage held by <b>e</b>. */
3374 : STATIC void
3375 1724 : entry_guard_free_(entry_guard_t *e)
3376 : {
3377 1724 : if (!e)
3378 : return;
3379 1723 : entry_guard_handles_clear(e);
3380 1723 : tor_free(e->sampled_by_version);
3381 1723 : tor_free(e->extra_state_fields);
3382 1723 : tor_free(e->selection_name);
3383 1723 : tor_free(e->bridge_addr);
3384 1723 : tor_free(e);
3385 : }
3386 :
3387 : /** Return 0 if we're fine adding arbitrary routers out of the
3388 : * directory to our entry guard list, or return 1 if we have a
3389 : * list already and we must stick to it.
3390 : */
3391 : int
3392 3 : entry_list_is_constrained(const or_options_t *options)
3393 : {
3394 : // XXXX #21425 look at the current selection.
3395 3 : if (options->EntryNodes)
3396 : return 1;
3397 3 : if (options->UseBridges)
3398 0 : return 1;
3399 : return 0;
3400 : }
3401 :
3402 : /** Return the number of bridges that have descriptors that are marked with
3403 : * purpose 'bridge' and are running. If use_maybe_reachable is
3404 : * true, include bridges that might be reachable in the count.
3405 : * Otherwise, if it is false, only include bridges that have recently been
3406 : * found running in the count.
3407 : *
3408 : * We use this function to decide if we're ready to start building
3409 : * circuits through our bridges, or if we need to wait until the
3410 : * directory "server/authority" requests finish. */
3411 0 : MOCK_IMPL(int,
3412 : num_bridges_usable,(int use_maybe_reachable))
3413 : {
3414 0 : int n_options = 0;
3415 :
3416 0 : if (BUG(!get_options()->UseBridges)) {
3417 0 : return 0;
3418 : }
3419 0 : guard_selection_t *gs = get_guard_selection_info();
3420 0 : if (BUG(gs->type != GS_TYPE_BRIDGE)) {
3421 0 : return 0;
3422 : }
3423 :
3424 0 : SMARTLIST_FOREACH_BEGIN(gs->sampled_entry_guards, entry_guard_t *, guard) {
3425 : /* Not a bridge, or not one we are configured to be able to use. */
3426 0 : if (! guard->is_filtered_guard)
3427 0 : continue;
3428 : /* Definitely not usable */
3429 0 : if (guard->is_reachable == GUARD_REACHABLE_NO)
3430 0 : continue;
3431 : /* If we want to be really sure the bridges will work, skip maybes */
3432 0 : if (!use_maybe_reachable && guard->is_reachable == GUARD_REACHABLE_MAYBE)
3433 0 : continue;
3434 0 : if (tor_digest_is_zero(guard->identity))
3435 0 : continue;
3436 0 : const node_t *node = node_get_by_id(guard->identity);
3437 0 : if (node && node->ri)
3438 0 : ++n_options;
3439 0 : } SMARTLIST_FOREACH_END(guard);
3440 :
3441 : return n_options;
3442 : }
3443 :
3444 : /** Check the pathbias use success count of <b>node</b> and disable it if it
3445 : * goes over our thresholds. */
3446 : static void
3447 31 : pathbias_check_use_success_count(entry_guard_t *node)
3448 : {
3449 31 : const or_options_t *options = get_options();
3450 31 : const double EPSILON = 1.0e-9;
3451 :
3452 : /* Note: We rely on the < comparison here to allow us to set a 0
3453 : * rate and disable the feature entirely. If refactoring, don't
3454 : * change to <= */
3455 31 : if (node->pb.use_attempts > EPSILON &&
3456 0 : pathbias_get_use_success_count(node)/node->pb.use_attempts
3457 0 : < pathbias_get_extreme_use_rate(options) &&
3458 0 : pathbias_get_dropguards(options)) {
3459 0 : node->pb.path_bias_disabled = 1;
3460 0 : log_info(LD_GENERAL,
3461 : "Path use bias is too high (%f/%f); disabling node %s",
3462 : node->pb.circ_successes, node->pb.circ_attempts,
3463 : node->nickname);
3464 : }
3465 31 : }
3466 :
3467 : /** Check the pathbias close count of <b>node</b> and disable it if it goes
3468 : * over our thresholds. */
3469 : static void
3470 31 : pathbias_check_close_success_count(entry_guard_t *node)
3471 : {
3472 31 : const or_options_t *options = get_options();
3473 31 : const double EPSILON = 1.0e-9;
3474 :
3475 : /* Note: We rely on the < comparison here to allow us to set a 0
3476 : * rate and disable the feature entirely. If refactoring, don't
3477 : * change to <= */
3478 42 : if (node->pb.circ_attempts > EPSILON &&
3479 11 : pathbias_get_close_success_count(node)/node->pb.circ_attempts
3480 11 : < pathbias_get_extreme_rate(options) &&
3481 0 : pathbias_get_dropguards(options)) {
3482 0 : node->pb.path_bias_disabled = 1;
3483 0 : log_info(LD_GENERAL,
3484 : "Path bias is too high (%f/%f); disabling node %s",
3485 : node->pb.circ_successes, node->pb.circ_attempts,
3486 : node->nickname);
3487 : }
3488 31 : }
3489 :
3490 : /** Parse <b>state</b> and learn about the entry guards it describes.
3491 : * If <b>set</b> is true, and there are no errors, replace the guard
3492 : * list in the default guard selection context with what we find.
3493 : * On success, return 0. On failure, alloc into *<b>msg</b> a string
3494 : * describing the error, and return -1.
3495 : */
3496 : int
3497 17 : entry_guards_parse_state(or_state_t *state, int set, char **msg)
3498 : {
3499 17 : entry_guards_dirty = 0;
3500 17 : int r1 = entry_guards_load_guards_from_state(state, set);
3501 17 : entry_guards_dirty = 0;
3502 :
3503 17 : if (r1 < 0) {
3504 2 : if (msg && *msg == NULL) {
3505 2 : *msg = tor_strdup("parsing error");
3506 : }
3507 2 : return -1;
3508 : }
3509 : return 0;
3510 : }
3511 :
3512 : /** How long will we let a change in our guard nodes stay un-saved
3513 : * when we are trying to avoid disk writes? */
3514 : #define SLOW_GUARD_STATE_FLUSH_TIME 600
3515 : /** How long will we let a change in our guard nodes stay un-saved
3516 : * when we are not trying to avoid disk writes? */
3517 : #define FAST_GUARD_STATE_FLUSH_TIME 30
3518 :
3519 : /** Our list of entry guards has changed for a particular guard selection
3520 : * context, or some element of one of our entry guards has changed for one.
3521 : * Write the changes to disk within the next few minutes.
3522 : */
3523 : void
3524 2113 : entry_guards_changed_for_guard_selection(guard_selection_t *gs)
3525 : {
3526 2113 : time_t when;
3527 :
3528 2113 : tor_assert(gs != NULL);
3529 :
3530 2113 : entry_guards_dirty = 1;
3531 :
3532 2113 : if (get_options()->AvoidDiskWrites)
3533 0 : when = time(NULL) + SLOW_GUARD_STATE_FLUSH_TIME;
3534 : else
3535 2113 : when = time(NULL) + FAST_GUARD_STATE_FLUSH_TIME;
3536 :
3537 : /* or_state_save() will call entry_guards_update_state() and
3538 : entry_guards_update_guards_in_state()
3539 : */
3540 2113 : or_state_mark_dirty(get_or_state(), when);
3541 2113 : }
3542 :
3543 : /** Our list of entry guards has changed for the default guard selection
3544 : * context, or some element of one of our entry guards has changed. Write
3545 : * the changes to disk within the next few minutes.
3546 : */
3547 : void
3548 0 : entry_guards_changed(void)
3549 : {
3550 0 : entry_guards_changed_for_guard_selection(get_guard_selection_info());
3551 0 : }
3552 :
3553 : /** If the entry guard info has not changed, do nothing and return.
3554 : * Otherwise, free the EntryGuards piece of <b>state</b> and create
3555 : * a new one out of the global entry_guards list, and then mark
3556 : * <b>state</b> dirty so it will get saved to disk.
3557 : */
3558 : void
3559 5 : entry_guards_update_state(or_state_t *state)
3560 : {
3561 5 : entry_guards_dirty = 0;
3562 :
3563 : // Handles all guard info.
3564 5 : entry_guards_update_guards_in_state(state);
3565 :
3566 5 : entry_guards_dirty = 0;
3567 :
3568 5 : if (!get_options()->AvoidDiskWrites)
3569 5 : or_state_mark_dirty(get_or_state(), 0);
3570 5 : entry_guards_dirty = 0;
3571 5 : }
3572 :
3573 : /** Return true iff the circuit's guard can succeed, that is, can be used. */
3574 : int
3575 0 : entry_guard_could_succeed(const circuit_guard_state_t *guard_state)
3576 : {
3577 0 : if (get_options()->UseEntryGuards == 0) {
3578 : /* we're fine with this circuit's first hop, because we're not
3579 : * configured to use entry guards. */
3580 : return 1;
3581 : }
3582 :
3583 0 : if (!guard_state) {
3584 : return 0;
3585 : }
3586 :
3587 0 : entry_guard_t *guard = entry_guard_handle_get(guard_state->guard);
3588 0 : if (!guard || BUG(guard->in_selection == NULL)) {
3589 0 : return 0;
3590 : }
3591 :
3592 : return 1;
3593 : }
3594 :
3595 : /**
3596 : * Format a single entry guard in the format expected by the controller.
3597 : * Return a newly allocated string.
3598 : */
3599 : STATIC char *
3600 0 : getinfo_helper_format_single_entry_guard(const entry_guard_t *e)
3601 : {
3602 0 : const char *status = NULL;
3603 0 : time_t when = 0;
3604 0 : const node_t *node;
3605 0 : char tbuf[ISO_TIME_LEN+1];
3606 0 : char nbuf[MAX_VERBOSE_NICKNAME_LEN+1];
3607 :
3608 : /* This is going to be a bit tricky, since the status
3609 : * codes weren't really intended for prop271 guards.
3610 : *
3611 : * XXXX use a more appropriate format for exporting this information
3612 : */
3613 0 : if (e->confirmed_idx < 0) {
3614 : status = "never-connected";
3615 0 : } else if (! e->currently_listed) {
3616 0 : when = e->unlisted_since_date;
3617 0 : status = "unusable";
3618 0 : } else if (! e->is_filtered_guard) {
3619 : status = "unusable";
3620 0 : } else if (e->is_reachable == GUARD_REACHABLE_NO) {
3621 0 : when = e->failing_since;
3622 0 : status = "down";
3623 : } else {
3624 : status = "up";
3625 : }
3626 :
3627 0 : node = entry_guard_find_node(e);
3628 0 : if (node) {
3629 0 : node_get_verbose_nickname(node, nbuf);
3630 : } else {
3631 0 : nbuf[0] = '$';
3632 0 : base16_encode(nbuf+1, sizeof(nbuf)-1, e->identity, DIGEST_LEN);
3633 : /* e->nickname field is not very reliable if we don't know about
3634 : * this router any longer; don't include it. */
3635 : }
3636 :
3637 0 : char *result = NULL;
3638 0 : if (when) {
3639 0 : format_iso_time(tbuf, when);
3640 0 : tor_asprintf(&result, "%s %s %s\n", nbuf, status, tbuf);
3641 : } else {
3642 0 : tor_asprintf(&result, "%s %s\n", nbuf, status);
3643 : }
3644 0 : return result;
3645 : }
3646 :
3647 : /** If <b>question</b> is the string "entry-guards", then dump
3648 : * to *<b>answer</b> a newly allocated string describing all of
3649 : * the nodes in the global entry_guards list. See control-spec.txt
3650 : * for details.
3651 : * For backward compatibility, we also handle the string "helper-nodes".
3652 : *
3653 : * XXX this should be totally redesigned after prop 271 too, and that's
3654 : * going to take some control spec work.
3655 : * */
3656 : int
3657 0 : getinfo_helper_entry_guards(control_connection_t *conn,
3658 : const char *question, char **answer,
3659 : const char **errmsg)
3660 : {
3661 0 : guard_selection_t *gs = get_guard_selection_info();
3662 :
3663 0 : tor_assert(gs != NULL);
3664 :
3665 0 : (void) conn;
3666 0 : (void) errmsg;
3667 :
3668 0 : if (!strcmp(question,"entry-guards") ||
3669 0 : !strcmp(question,"helper-nodes")) {
3670 0 : const smartlist_t *guards;
3671 0 : guards = gs->sampled_entry_guards;
3672 :
3673 0 : smartlist_t *sl = smartlist_new();
3674 :
3675 0 : SMARTLIST_FOREACH_BEGIN(guards, const entry_guard_t *, e) {
3676 0 : char *cp = getinfo_helper_format_single_entry_guard(e);
3677 0 : smartlist_add(sl, cp);
3678 0 : } SMARTLIST_FOREACH_END(e);
3679 0 : *answer = smartlist_join_strings(sl, "", 0, NULL);
3680 0 : SMARTLIST_FOREACH(sl, char *, c, tor_free(c));
3681 0 : smartlist_free(sl);
3682 : }
3683 0 : return 0;
3684 : }
3685 :
3686 : /* Given the original bandwidth of a guard and its guardfraction,
3687 : * calculate how much bandwidth the guard should have as a guard and
3688 : * as a non-guard.
3689 : *
3690 : * Quoting from proposal236:
3691 : *
3692 : * Let Wpf denote the weight from the 'bandwidth-weights' line a
3693 : * client would apply to N for position p if it had the guard
3694 : * flag, Wpn the weight if it did not have the guard flag, and B the
3695 : * measured bandwidth of N in the consensus. Then instead of choosing
3696 : * N for position p proportionally to Wpf*B or Wpn*B, clients should
3697 : * choose N proportionally to F*Wpf*B + (1-F)*Wpn*B.
3698 : *
3699 : * This function fills the <b>guardfraction_bw</b> structure. It sets
3700 : * <b>guard_bw</b> to F*B and <b>non_guard_bw</b> to (1-F)*B.
3701 : */
3702 : void
3703 872 : guard_get_guardfraction_bandwidth(guardfraction_bandwidth_t *guardfraction_bw,
3704 : int orig_bandwidth,
3705 : uint32_t guardfraction_percentage)
3706 : {
3707 872 : double guardfraction_fraction;
3708 :
3709 : /* Turn the percentage into a fraction. */
3710 872 : tor_assert(guardfraction_percentage <= 100);
3711 872 : guardfraction_fraction = guardfraction_percentage / 100.0;
3712 :
3713 872 : long guard_bw = tor_lround(guardfraction_fraction * orig_bandwidth);
3714 872 : tor_assert(guard_bw <= INT_MAX);
3715 :
3716 872 : guardfraction_bw->guard_bw = (int) guard_bw;
3717 :
3718 872 : guardfraction_bw->non_guard_bw = orig_bandwidth - (int) guard_bw;
3719 872 : }
3720 :
3721 : /** Helper: Update the status of all entry guards, in whatever algorithm
3722 : * is used. Return true if we should stop using all previously generated
3723 : * circuits, by calling circuit_mark_all_unused_circs() and
3724 : * circuit_mark_all_dirty_circs_as_unusable().
3725 : */
3726 : int
3727 2 : guards_update_all(void)
3728 : {
3729 2 : int mark_circuits = 0;
3730 2 : if (update_guard_selection_choice(get_options()))
3731 1 : mark_circuits = 1;
3732 :
3733 2 : tor_assert(curr_guard_context);
3734 :
3735 2 : if (entry_guards_update_all(curr_guard_context))
3736 0 : mark_circuits = 1;
3737 :
3738 2 : return mark_circuits;
3739 : }
3740 :
3741 : /** Helper: pick a guard for a circuit, with whatever algorithm is
3742 : used. */
3743 : const node_t *
3744 6 : guards_choose_guard(cpath_build_state_t *state,
3745 : uint8_t purpose,
3746 : circuit_guard_state_t **guard_state_out)
3747 : {
3748 6 : const node_t *r = NULL;
3749 6 : const uint8_t *exit_id = NULL;
3750 6 : entry_guard_restriction_t *rst = NULL;
3751 :
3752 : /* Only apply restrictions if we have a specific exit node in mind, and only
3753 : * if we are not doing vanguard circuits: we don't want to apply guard
3754 : * restrictions to vanguard circuits. */
3755 6 : if (state && !circuit_should_use_vanguards(purpose) &&
3756 3 : (exit_id = build_state_get_exit_rsa_id(state))) {
3757 : /* We're building to a targeted exit node, so that node can't be
3758 : * chosen as our guard for this circuit. Remember that fact in a
3759 : * restriction. */
3760 3 : rst = guard_create_exit_restriction(exit_id);
3761 3 : tor_assert(rst);
3762 : }
3763 6 : if (entry_guard_pick_for_circuit(get_guard_selection_info(),
3764 : GUARD_USAGE_TRAFFIC,
3765 : rst,
3766 : &r,
3767 : guard_state_out) < 0) {
3768 0 : tor_assert(r == NULL);
3769 : }
3770 6 : return r;
3771 : }
3772 :
3773 : /** Remove all currently listed entry guards for a given guard selection
3774 : * context. This frees and replaces <b>gs</b>, so don't use <b>gs</b>
3775 : * after calling this function. */
3776 : void
3777 3 : remove_all_entry_guards_for_guard_selection(guard_selection_t *gs)
3778 : {
3779 : // This function shouldn't exist. XXXX
3780 3 : tor_assert(gs != NULL);
3781 3 : char *old_name = tor_strdup(gs->name);
3782 3 : guard_selection_type_t old_type = gs->type;
3783 :
3784 63 : SMARTLIST_FOREACH(gs->sampled_entry_guards, entry_guard_t *, entry, {
3785 : control_event_guard(entry->nickname, entry->identity, "DROPPED");
3786 : });
3787 :
3788 3 : if (gs == curr_guard_context) {
3789 3 : curr_guard_context = NULL;
3790 : }
3791 :
3792 3 : smartlist_remove(guard_contexts, gs);
3793 3 : guard_selection_free(gs);
3794 :
3795 3 : gs = get_guard_selection_by_name(old_name, old_type, 1);
3796 3 : entry_guards_changed_for_guard_selection(gs);
3797 3 : tor_free(old_name);
3798 3 : }
3799 :
3800 : /** Remove all currently listed entry guards, so new ones will be chosen.
3801 : *
3802 : * XXXX This function shouldn't exist -- it's meant to support the DROPGUARDS
3803 : * command, which is deprecated.
3804 : */
3805 : void
3806 0 : remove_all_entry_guards(void)
3807 : {
3808 0 : remove_all_entry_guards_for_guard_selection(get_guard_selection_info());
3809 0 : }
3810 :
3811 : /** Helper: pick a directory guard, with whatever algorithm is used. */
3812 : const node_t *
3813 4 : guards_choose_dirguard(uint8_t dir_purpose,
3814 : circuit_guard_state_t **guard_state_out)
3815 : {
3816 4 : const node_t *r = NULL;
3817 4 : entry_guard_restriction_t *rst = NULL;
3818 :
3819 : /* If we are fetching microdescs, don't query outdated dirservers. */
3820 4 : if (dir_purpose == DIR_PURPOSE_FETCH_MICRODESC) {
3821 4 : rst = guard_create_dirserver_md_restriction();
3822 : }
3823 :
3824 4 : if (entry_guard_pick_for_circuit(get_guard_selection_info(),
3825 : GUARD_USAGE_DIRGUARD,
3826 : rst,
3827 : &r,
3828 : guard_state_out) < 0) {
3829 0 : tor_assert(r == NULL);
3830 : }
3831 4 : return r;
3832 : }
3833 :
3834 : /**
3835 : * If we're running with a constrained guard set, then maybe mark our guards
3836 : * usable. Return 1 if we do; 0 if we don't.
3837 : */
3838 : int
3839 0 : guards_retry_optimistic(const or_options_t *options)
3840 : {
3841 0 : if (! entry_list_is_constrained(options))
3842 : return 0;
3843 :
3844 0 : mark_primary_guards_maybe_reachable(get_guard_selection_info());
3845 :
3846 0 : return 1;
3847 : }
3848 :
3849 : /**
3850 : * Check if we are missing any crucial dirinfo for the guard subsystem to
3851 : * work. Return NULL if everything went well, otherwise return a newly
3852 : * allocated string with an informative error message. In the latter case, use
3853 : * the general descriptor information <b>using_mds</b>, <b>num_present</b> and
3854 : * <b>num_usable</b> to improve the error message. */
3855 : char *
3856 6 : guard_selection_get_err_str_if_dir_info_missing(guard_selection_t *gs,
3857 : int using_mds,
3858 : int num_present, int num_usable)
3859 : {
3860 6 : if (!gs->primary_guards_up_to_date)
3861 0 : entry_guards_update_primary(gs);
3862 :
3863 6 : char *ret_str = NULL;
3864 6 : int n_missing_descriptors = 0;
3865 6 : int n_considered = 0;
3866 6 : int num_primary_to_check;
3867 :
3868 : /* We want to check for the descriptor of at least the first two primary
3869 : * guards in our list, since these are the guards that we typically use for
3870 : * circuits. */
3871 6 : num_primary_to_check = get_n_primary_guards_to_use(GUARD_USAGE_TRAFFIC);
3872 6 : num_primary_to_check++;
3873 :
3874 12 : SMARTLIST_FOREACH_BEGIN(gs->primary_entry_guards, entry_guard_t *, guard) {
3875 12 : entry_guard_consider_retry(guard);
3876 12 : if (guard->is_reachable == GUARD_REACHABLE_NO)
3877 0 : continue;
3878 12 : n_considered++;
3879 12 : if (!guard_has_descriptor(guard))
3880 3 : n_missing_descriptors++;
3881 12 : if (n_considered >= num_primary_to_check)
3882 : break;
3883 6 : } SMARTLIST_FOREACH_END(guard);
3884 :
3885 : /* If we are not missing any descriptors, return NULL. */
3886 6 : if (!n_missing_descriptors) {
3887 : return NULL;
3888 : }
3889 :
3890 : /* otherwise return a helpful error string */
3891 3 : tor_asprintf(&ret_str, "We're missing descriptors for %d/%d of our "
3892 : "primary entry guards (total %sdescriptors: %d/%d). "
3893 : "That's ok. We will try to fetch missing descriptors soon.",
3894 : n_missing_descriptors, num_primary_to_check,
3895 : using_mds?"micro":"", num_present, num_usable);
3896 :
3897 3 : return ret_str;
3898 : }
3899 :
3900 : /** As guard_selection_have_enough_dir_info_to_build_circuits, but uses
3901 : * the default guard selection. */
3902 : char *
3903 0 : entry_guards_get_err_str_if_dir_info_missing(int using_mds,
3904 : int num_present, int num_usable)
3905 : {
3906 0 : return guard_selection_get_err_str_if_dir_info_missing(
3907 : get_guard_selection_info(),
3908 : using_mds,
3909 : num_present, num_usable);
3910 : }
3911 :
3912 : /** Free one guard selection context */
3913 : STATIC void
3914 97 : guard_selection_free_(guard_selection_t *gs)
3915 : {
3916 97 : if (!gs) return;
3917 :
3918 97 : tor_free(gs->name);
3919 :
3920 97 : if (gs->sampled_entry_guards) {
3921 1787 : SMARTLIST_FOREACH(gs->sampled_entry_guards, entry_guard_t *, e,
3922 : entry_guard_free(e));
3923 97 : smartlist_free(gs->sampled_entry_guards);
3924 97 : gs->sampled_entry_guards = NULL;
3925 : }
3926 :
3927 97 : smartlist_free(gs->confirmed_entry_guards);
3928 97 : smartlist_free(gs->primary_entry_guards);
3929 :
3930 97 : tor_free(gs);
3931 : }
3932 :
3933 : /** Release all storage held by the list of entry guards and related
3934 : * memory structs. */
3935 : void
3936 240 : entry_guards_free_all(void)
3937 : {
3938 : /* Null out the default */
3939 240 : curr_guard_context = NULL;
3940 : /* Free all the guard contexts */
3941 240 : if (guard_contexts != NULL) {
3942 10 : SMARTLIST_FOREACH_BEGIN(guard_contexts, guard_selection_t *, gs) {
3943 4 : guard_selection_free(gs);
3944 4 : } SMARTLIST_FOREACH_END(gs);
3945 6 : smartlist_free(guard_contexts);
3946 6 : guard_contexts = NULL;
3947 : }
3948 240 : circuit_build_times_free_timeouts(get_circuit_build_times_mutable());
3949 240 : }
|