Line data Source code
1 : /* Copyright (c) 2001, Matej Pfajfar.
2 : * Copyright (c) 2001-2004, Roger Dingledine.
3 : * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
4 : * Copyright (c) 2007-2021, The Tor Project, Inc. */
5 : /* See LICENSE for licensing information */
6 :
7 : /**
8 : * \file crypto_s2k.c
9 : *
10 : * \brief Functions for deriving keys from human-readable passphrases.
11 : */
12 :
13 : #define CRYPTO_S2K_PRIVATE
14 :
15 : #include "lib/crypt_ops/crypto_cipher.h"
16 : #include "lib/crypt_ops/crypto_digest.h"
17 : #include "lib/crypt_ops/crypto_hkdf.h"
18 : #include "lib/crypt_ops/crypto_rand.h"
19 : #include "lib/crypt_ops/crypto_s2k.h"
20 : #include "lib/crypt_ops/crypto_util.h"
21 : #include "lib/ctime/di_ops.h"
22 : #include "lib/log/util_bug.h"
23 : #include "lib/intmath/cmp.h"
24 :
25 : #ifdef ENABLE_OPENSSL
26 : #include <openssl/evp.h>
27 : #endif
28 : #ifdef ENABLE_NSS
29 : #include <pk11pub.h>
30 : #endif
31 :
32 : #if defined(HAVE_LIBSCRYPT_H) && defined(HAVE_LIBSCRYPT_SCRYPT)
33 : #define HAVE_SCRYPT
34 : #include <libscrypt.h>
35 : #endif
36 :
37 : #include <string.h>
38 :
39 : /* Encoded secrets take the form:
40 :
41 : u8 type;
42 : u8 salt_and_parameters[depends on type];
43 : u8 key[depends on type];
44 :
45 : As a special case, if the encoded secret is exactly 29 bytes long,
46 : type 0 is understood.
47 :
48 : Recognized types are:
49 : 00 -- RFC2440. salt_and_parameters is 9 bytes. key is 20 bytes.
50 : salt_and_parameters is 8 bytes random salt,
51 : 1 byte iteration info.
52 : 01 -- PKBDF2_SHA1. salt_and_parameters is 17 bytes. key is 20 bytes.
53 : salt_and_parameters is 16 bytes random salt,
54 : 1 byte iteration info.
55 : 02 -- SCRYPT_SALSA208_SHA256. salt_and_parameters is 18 bytes. key is
56 : 32 bytes.
57 : salt_and_parameters is 18 bytes random salt, 2 bytes iteration
58 : info.
59 : */
60 :
61 : #define S2K_TYPE_RFC2440 0
62 : #define S2K_TYPE_PBKDF2 1
63 : #define S2K_TYPE_SCRYPT 2
64 :
65 : #define PBKDF2_SPEC_LEN 17
66 : #define PBKDF2_KEY_LEN 20
67 :
68 : #define SCRYPT_SPEC_LEN 18
69 : #define SCRYPT_KEY_LEN 32
70 :
71 : /** Given an algorithm ID (one of S2K_TYPE_*), return the length of the
72 : * specifier part of it, without the prefix type byte. Return -1 if it is not
73 : * a valid algorithm ID. */
74 : static int
75 93 : secret_to_key_spec_len(uint8_t type)
76 : {
77 93 : switch (type) {
78 : case S2K_TYPE_RFC2440:
79 : return S2K_RFC2440_SPECIFIER_LEN;
80 : case S2K_TYPE_PBKDF2:
81 : return PBKDF2_SPEC_LEN;
82 : case S2K_TYPE_SCRYPT:
83 : return SCRYPT_SPEC_LEN;
84 : default:
85 : return -1;
86 : }
87 : }
88 :
89 : /** Given an algorithm ID (one of S2K_TYPE_*), return the length of the
90 : * its preferred output. */
91 : static int
92 28 : secret_to_key_key_len(uint8_t type)
93 : {
94 28 : switch (type) {
95 : case S2K_TYPE_RFC2440:
96 : return DIGEST_LEN;
97 : case S2K_TYPE_PBKDF2:
98 : return DIGEST_LEN;
99 12 : case S2K_TYPE_SCRYPT:
100 12 : return DIGEST256_LEN;
101 : // LCOV_EXCL_START
102 : default:
103 : tor_fragile_assert();
104 : return -1;
105 : // LCOV_EXCL_STOP
106 : }
107 : }
108 :
109 : /** Given a specifier in <b>spec_and_key</b> of length
110 : * <b>spec_and_key_len</b>, along with its prefix algorithm ID byte, and along
111 : * with a key if <b>key_included</b> is true, check whether the whole
112 : * specifier-and-key is of valid length, and return the algorithm type if it
113 : * is. Set *<b>legacy_out</b> to 1 iff this is a legacy password hash or
114 : * legacy specifier. Return an error code on failure.
115 : */
116 : static int
117 56 : secret_to_key_get_type(const uint8_t *spec_and_key, size_t spec_and_key_len,
118 : int key_included, int *legacy_out)
119 : {
120 56 : size_t legacy_len = S2K_RFC2440_SPECIFIER_LEN;
121 56 : uint8_t type;
122 56 : int total_len;
123 :
124 56 : if (key_included)
125 13 : legacy_len += DIGEST_LEN;
126 :
127 56 : if (spec_and_key_len == legacy_len) {
128 5 : *legacy_out = 1;
129 5 : return S2K_TYPE_RFC2440;
130 : }
131 :
132 51 : *legacy_out = 0;
133 51 : if (spec_and_key_len == 0)
134 : return S2K_BAD_LEN;
135 :
136 49 : type = spec_and_key[0];
137 49 : total_len = secret_to_key_spec_len(type);
138 49 : if (total_len < 0)
139 : return S2K_BAD_ALGORITHM;
140 47 : if (key_included) {
141 9 : int keylen = secret_to_key_key_len(type);
142 9 : if (keylen < 0)
143 : return S2K_BAD_ALGORITHM;
144 9 : total_len += keylen;
145 : }
146 :
147 47 : if ((size_t)total_len + 1 == spec_and_key_len)
148 : return type;
149 : else
150 3 : return S2K_BAD_LEN;
151 : }
152 :
153 : /**
154 : * Write a new random s2k specifier of type <b>type</b>, without prefixing
155 : * type byte, to <b>spec_out</b>, which must have enough room. May adjust
156 : * parameter choice based on <b>flags</b>.
157 : */
158 : static int
159 15 : make_specifier(uint8_t *spec_out, uint8_t type, unsigned flags)
160 : {
161 15 : int speclen = secret_to_key_spec_len(type);
162 15 : if (speclen < 0)
163 : return S2K_BAD_ALGORITHM;
164 :
165 15 : crypto_rand((char*)spec_out, speclen);
166 15 : switch (type) {
167 5 : case S2K_TYPE_RFC2440:
168 : /* Hash 64 k of data. */
169 5 : spec_out[S2K_RFC2440_SPECIFIER_LEN-1] = 96;
170 5 : break;
171 3 : case S2K_TYPE_PBKDF2:
172 : /* 131 K iterations */
173 3 : spec_out[PBKDF2_SPEC_LEN-1] = 17;
174 3 : break;
175 7 : case S2K_TYPE_SCRYPT:
176 7 : if (flags & S2K_FLAG_LOW_MEM) {
177 : /* N = 1<<12 */
178 3 : spec_out[SCRYPT_SPEC_LEN-2] = 12;
179 : } else {
180 : /* N = 1<<15 */
181 4 : spec_out[SCRYPT_SPEC_LEN-2] = 15;
182 : }
183 : /* r = 8; p = 2. */
184 7 : spec_out[SCRYPT_SPEC_LEN-1] = (3u << 4) | (1u << 0);
185 7 : break;
186 : // LCOV_EXCL_START - we should have returned above.
187 : default:
188 : tor_fragile_assert();
189 : return S2K_BAD_ALGORITHM;
190 : // LCOV_EXCL_STOP
191 : }
192 :
193 : return speclen;
194 : }
195 :
196 : /** Implement RFC2440-style iterated-salted S2K conversion: convert the
197 : * <b>secret_len</b>-byte <b>secret</b> into a <b>key_out_len</b> byte
198 : * <b>key_out</b>. As in RFC2440, the first 8 bytes of s2k_specifier
199 : * are a salt; the 9th byte describes how much iteration to do.
200 : * If <b>key_out_len</b> > DIGEST_LEN, use HDKF to expand the result.
201 : */
202 : void
203 22 : secret_to_key_rfc2440(char *key_out, size_t key_out_len, const char *secret,
204 : size_t secret_len, const char *s2k_specifier)
205 : {
206 22 : crypto_digest_t *d;
207 22 : uint8_t c;
208 22 : size_t count, tmplen;
209 22 : char *tmp;
210 22 : uint8_t buf[DIGEST_LEN];
211 22 : tor_assert(key_out_len < SIZE_T_CEILING);
212 :
213 : #define EXPBIAS 6
214 22 : c = s2k_specifier[8];
215 22 : count = ((uint32_t)16 + (c & 15)) << ((c >> 4) + EXPBIAS);
216 : #undef EXPBIAS
217 :
218 22 : d = crypto_digest_new();
219 22 : tmplen = 8+secret_len;
220 22 : tmp = tor_malloc(tmplen);
221 22 : memcpy(tmp,s2k_specifier,8);
222 22 : memcpy(tmp+8,secret,secret_len);
223 22 : secret_len += 8;
224 31570 : while (count) {
225 31568 : if (count >= secret_len) {
226 31548 : crypto_digest_add_bytes(d, tmp, secret_len);
227 31548 : count -= secret_len;
228 : } else {
229 20 : crypto_digest_add_bytes(d, tmp, count);
230 20 : count = 0;
231 : }
232 : }
233 22 : crypto_digest_get_digest(d, (char*)buf, sizeof(buf));
234 :
235 22 : if (key_out_len <= sizeof(buf)) {
236 10 : memcpy(key_out, buf, key_out_len);
237 : } else {
238 12 : crypto_expand_key_material_rfc5869_sha256(buf, DIGEST_LEN,
239 : (const uint8_t*)s2k_specifier, 8,
240 : (const uint8_t*)"EXPAND", 6,
241 : (uint8_t*)key_out, key_out_len);
242 : }
243 22 : memwipe(tmp, 0, tmplen);
244 22 : memwipe(buf, 0, sizeof(buf));
245 22 : tor_free(tmp);
246 22 : crypto_digest_free(d);
247 22 : }
248 :
249 : /**
250 : * Helper: given a valid specifier without prefix type byte in <b>spec</b>,
251 : * whose length must be correct, and given a secret passphrase <b>secret</b>
252 : * of length <b>secret_len</b>, compute the key and store it into
253 : * <b>key_out</b>, which must have enough room for secret_to_key_key_len(type)
254 : * bytes. Return the number of bytes written on success and an error code
255 : * on failure.
256 : */
257 : STATIC int
258 63 : secret_to_key_compute_key(uint8_t *key_out, size_t key_out_len,
259 : const uint8_t *spec, size_t spec_len,
260 : const char *secret, size_t secret_len,
261 : int type)
262 : {
263 63 : int rv;
264 63 : if (key_out_len > INT_MAX)
265 : return S2K_BAD_LEN;
266 :
267 63 : switch (type) {
268 20 : case S2K_TYPE_RFC2440:
269 20 : secret_to_key_rfc2440((char*)key_out, key_out_len, secret, secret_len,
270 : (const char*)spec);
271 20 : return (int)key_out_len;
272 :
273 16 : case S2K_TYPE_PBKDF2: {
274 16 : uint8_t log_iters;
275 16 : if (spec_len < 1 || secret_len > INT_MAX || spec_len > INT_MAX)
276 : return S2K_BAD_LEN;
277 16 : log_iters = spec[spec_len-1];
278 16 : if (log_iters > 31)
279 : return S2K_BAD_PARAMS;
280 : #ifdef ENABLE_OPENSSL
281 30 : rv = PKCS5_PBKDF2_HMAC_SHA1(secret, (int)secret_len,
282 15 : spec, (int)spec_len-1,
283 : (1<<log_iters),
284 : (int)key_out_len, key_out);
285 15 : if (rv < 0)
286 0 : return S2K_FAILED;
287 : return (int)key_out_len;
288 : #else /* !defined(ENABLE_OPENSSL) */
289 : SECItem passItem = { .type = siBuffer,
290 : .data = (unsigned char *) secret,
291 : .len = (int)secret_len };
292 : SECItem saltItem = { .type = siBuffer,
293 : .data = (unsigned char *) spec,
294 : .len = (int)spec_len - 1 };
295 : SECAlgorithmID *alg = NULL;
296 : PK11SymKey *key = NULL;
297 :
298 : rv = S2K_FAILED;
299 : alg = PK11_CreatePBEV2AlgorithmID(
300 : SEC_OID_PKCS5_PBKDF2, SEC_OID_HMAC_SHA1, SEC_OID_HMAC_SHA1,
301 : (int)key_out_len, (1<<log_iters), &saltItem);
302 : if (alg == NULL)
303 : return S2K_FAILED;
304 :
305 : key = PK11_PBEKeyGen(NULL /* slot */,
306 : alg,
307 : &passItem,
308 : false,
309 : NULL);
310 :
311 : SECStatus st = PK11_ExtractKeyValue(key);
312 : if (st != SECSuccess)
313 : goto nss_pbkdf_err;
314 :
315 : const SECItem *iptr = PK11_GetKeyData(key);
316 : if (iptr == NULL)
317 : goto nss_pbkdf_err;
318 :
319 : rv = MIN((int)iptr->len, (int)key_out_len);
320 : memcpy(key_out, iptr->data, rv);
321 :
322 : nss_pbkdf_err:
323 : if (key)
324 : PK11_FreeSymKey(key);
325 : if (alg)
326 : SECOID_DestroyAlgorithmID(alg, PR_TRUE);
327 : return rv;
328 : #endif /* defined(ENABLE_OPENSSL) */
329 : }
330 :
331 27 : case S2K_TYPE_SCRYPT: {
332 : #ifdef HAVE_SCRYPT
333 27 : uint8_t log_N, log_r, log_p;
334 27 : uint64_t N;
335 27 : uint32_t r, p;
336 27 : if (spec_len < 2)
337 : return S2K_BAD_LEN;
338 27 : log_N = spec[spec_len-2];
339 27 : log_r = (spec[spec_len-1]) >> 4;
340 27 : log_p = (spec[spec_len-1]) & 15;
341 27 : if (log_N > 63)
342 : return S2K_BAD_PARAMS;
343 26 : N = ((uint64_t)1) << log_N;
344 26 : r = 1u << log_r;
345 26 : p = 1u << log_p;
346 26 : rv = libscrypt_scrypt((const uint8_t*)secret, secret_len,
347 : spec, spec_len-2, N, r, p, key_out, key_out_len);
348 26 : if (rv != 0)
349 : return S2K_FAILED;
350 26 : return (int)key_out_len;
351 : #else /* !defined(HAVE_SCRYPT) */
352 : return S2K_NO_SCRYPT_SUPPORT;
353 : #endif /* defined(HAVE_SCRYPT) */
354 : }
355 : default:
356 : return S2K_BAD_ALGORITHM;
357 : }
358 : }
359 :
360 : /**
361 : * Given a specifier previously constructed with secret_to_key_make_specifier
362 : * in <b>spec</b> of length <b>spec_len</b>, and a secret password in
363 : * <b>secret</b> of length <b>secret_len</b>, generate <b>key_out_len</b>
364 : * bytes of cryptographic material in <b>key_out</b>. The native output of
365 : * the secret-to-key function will be truncated if key_out_len is short, and
366 : * expanded with HKDF if key_out_len is long. Returns S2K_OKAY on success,
367 : * and an error code on failure.
368 : */
369 : int
370 43 : secret_to_key_derivekey(uint8_t *key_out, size_t key_out_len,
371 : const uint8_t *spec, size_t spec_len,
372 : const char *secret, size_t secret_len)
373 : {
374 43 : int legacy_format = 0;
375 43 : int type = secret_to_key_get_type(spec, spec_len, 0, &legacy_format);
376 43 : int r;
377 :
378 43 : if (type < 0)
379 : return type;
380 : #ifndef HAVE_SCRYPT
381 : if (type == S2K_TYPE_SCRYPT)
382 : return S2K_NO_SCRYPT_SUPPORT;
383 : #endif
384 :
385 39 : if (! legacy_format) {
386 36 : ++spec;
387 36 : --spec_len;
388 : }
389 :
390 39 : r = secret_to_key_compute_key(key_out, key_out_len, spec, spec_len,
391 : secret, secret_len, type);
392 39 : if (r < 0)
393 : return r;
394 : else
395 37 : return S2K_OKAY;
396 : }
397 :
398 : /**
399 : * Construct a new s2k algorithm specifier and salt in <b>buf</b>, according
400 : * to the bitwise-or of some S2K_FLAG_* options in <b>flags</b>. Up to
401 : * <b>buf_len</b> bytes of storage may be used in <b>buf</b>. Return the
402 : * number of bytes used on success and an error code on failure.
403 : */
404 : int
405 19 : secret_to_key_make_specifier(uint8_t *buf, size_t buf_len, unsigned flags)
406 : {
407 19 : int rv;
408 19 : int spec_len;
409 : #ifdef HAVE_SCRYPT
410 19 : uint8_t type = S2K_TYPE_SCRYPT;
411 : #else
412 : uint8_t type = S2K_TYPE_RFC2440;
413 : #endif
414 :
415 19 : if (flags & S2K_FLAG_NO_SCRYPT)
416 6 : type = S2K_TYPE_RFC2440;
417 19 : if (flags & S2K_FLAG_USE_PBKDF2)
418 4 : type = S2K_TYPE_PBKDF2;
419 :
420 19 : spec_len = secret_to_key_spec_len(type);
421 :
422 19 : if ((int)buf_len < spec_len + 1)
423 : return S2K_TRUNCATED;
424 :
425 15 : buf[0] = type;
426 15 : rv = make_specifier(buf+1, type, flags);
427 15 : if (rv < 0)
428 : return rv;
429 : else
430 15 : return rv + 1;
431 : }
432 :
433 : /**
434 : * Hash a passphrase from <b>secret</b> of length <b>secret_len</b>, according
435 : * to the bitwise-or of some S2K_FLAG_* options in <b>flags</b>, and store the
436 : * hash along with salt and hashing parameters into <b>buf</b>. Up to
437 : * <b>buf_len</b> bytes of storage may be used in <b>buf</b>. Set
438 : * *<b>len_out</b> to the number of bytes used and return S2K_OKAY on success;
439 : * and return an error code on failure.
440 : */
441 : int
442 9 : secret_to_key_new(uint8_t *buf,
443 : size_t buf_len,
444 : size_t *len_out,
445 : const char *secret, size_t secret_len,
446 : unsigned flags)
447 : {
448 9 : int key_len;
449 9 : int spec_len;
450 9 : int type;
451 9 : int rv;
452 :
453 9 : spec_len = secret_to_key_make_specifier(buf, buf_len, flags);
454 :
455 9 : if (spec_len < 0)
456 : return spec_len;
457 :
458 9 : type = buf[0];
459 9 : key_len = secret_to_key_key_len(type);
460 :
461 9 : if (key_len < 0)
462 : return key_len;
463 :
464 9 : if ((int)buf_len < key_len + spec_len)
465 : return S2K_TRUNCATED;
466 :
467 10 : rv = secret_to_key_compute_key(buf + spec_len, key_len,
468 5 : buf + 1, spec_len-1,
469 : secret, secret_len, type);
470 5 : if (rv < 0)
471 : return rv;
472 :
473 5 : *len_out = spec_len + key_len;
474 :
475 5 : return S2K_OKAY;
476 : }
477 :
478 : /**
479 : * Given a hashed passphrase in <b>spec_and_key</b> of length
480 : * <b>spec_and_key_len</b> as generated by secret_to_key_new(), verify whether
481 : * it is a hash of the passphrase <b>secret</b> of length <b>secret_len</b>.
482 : * Return S2K_OKAY on a match, S2K_BAD_SECRET on a well-formed hash that
483 : * doesn't match this secret, and another error code on other errors.
484 : */
485 : int
486 13 : secret_to_key_check(const uint8_t *spec_and_key, size_t spec_and_key_len,
487 : const char *secret, size_t secret_len)
488 : {
489 13 : int is_legacy = 0;
490 13 : int type = secret_to_key_get_type(spec_and_key, spec_and_key_len,
491 : 1, &is_legacy);
492 13 : uint8_t buf[32];
493 13 : int spec_len;
494 13 : int key_len;
495 13 : int rv;
496 :
497 13 : if (type < 0)
498 : return type;
499 :
500 10 : if (! is_legacy) {
501 8 : spec_and_key++;
502 8 : spec_and_key_len--;
503 : }
504 :
505 10 : spec_len = secret_to_key_spec_len(type);
506 10 : key_len = secret_to_key_key_len(type);
507 10 : tor_assert(spec_len > 0);
508 10 : tor_assert(key_len > 0);
509 10 : tor_assert(key_len <= (int) sizeof(buf));
510 10 : tor_assert((int)spec_and_key_len == spec_len + key_len);
511 10 : rv = secret_to_key_compute_key(buf, key_len,
512 : spec_and_key, spec_len,
513 : secret, secret_len, type);
514 10 : if (rv < 0)
515 0 : goto done;
516 :
517 10 : if (tor_memeq(buf, spec_and_key + spec_len, key_len))
518 : rv = S2K_OKAY;
519 : else
520 5 : rv = S2K_BAD_SECRET;
521 :
522 10 : done:
523 10 : memwipe(buf, 0, sizeof(buf));
524 10 : return rv;
525 : }
|