Line data Source code
1 :
2 : /* copyright (c) 2013-2015, The Tor Project, Inc. */
3 : /* See LICENSE for licensing information */
4 :
5 : /**
6 : * \file workqueue.c
7 : *
8 : * \brief Implements worker threads, queues of work for them, and mechanisms
9 : * for them to send answers back to the main thread.
10 : *
11 : * The main structure here is a threadpool_t : it manages a set of worker
12 : * threads, a queue of pending work, and a reply queue. Every piece of work
13 : * is a workqueue_entry_t, containing data to process and a function to
14 : * process it with.
15 : *
16 : * The main thread informs the worker threads of pending work by using a
17 : * condition variable. The workers inform the main process of completed work
18 : * by using an alert_sockets_t object, as implemented in net/alertsock.c.
19 : *
20 : * The main thread can also queue an "update" that will be handled by all the
21 : * workers. This is useful for updating state that all the workers share.
22 : *
23 : * In Tor today, there is currently only one thread pool, used in cpuworker.c.
24 : */
25 :
26 : #include "orconfig.h"
27 : #include "lib/evloop/compat_libevent.h"
28 : #include "lib/evloop/workqueue.h"
29 :
30 : #include "lib/crypt_ops/crypto_rand.h"
31 : #include "lib/intmath/weakrng.h"
32 : #include "lib/log/ratelim.h"
33 : #include "lib/log/log.h"
34 : #include "lib/log/util_bug.h"
35 : #include "lib/net/alertsock.h"
36 : #include "lib/net/socket.h"
37 : #include "lib/thread/threads.h"
38 :
39 : #include "ext/tor_queue.h"
40 : #include <event2/event.h>
41 : #include <string.h>
42 :
43 : #define WORKQUEUE_PRIORITY_FIRST WQ_PRI_HIGH
44 : #define WORKQUEUE_PRIORITY_LAST WQ_PRI_LOW
45 : #define WORKQUEUE_N_PRIORITIES (((int) WORKQUEUE_PRIORITY_LAST)+1)
46 :
47 : TOR_TAILQ_HEAD(work_tailq_t, workqueue_entry_t);
48 : typedef struct work_tailq_t work_tailq_t;
49 :
50 : struct threadpool_t {
51 : /** An array of pointers to workerthread_t: one for each running worker
52 : * thread. */
53 : struct workerthread_t **threads;
54 :
55 : /** Condition variable that we wait on when we have no work, and which
56 : * gets signaled when our queue becomes nonempty. */
57 : tor_cond_t condition;
58 : /** Queues of pending work that we have to do. The queue with priority
59 : * <b>p</b> is work[p]. */
60 : work_tailq_t work[WORKQUEUE_N_PRIORITIES];
61 :
62 : /** The current 'update generation' of the threadpool. Any thread that is
63 : * at an earlier generation needs to run the update function. */
64 : unsigned generation;
65 :
66 : /** Function that should be run for updates on each thread. */
67 : workqueue_reply_t (*update_fn)(void *, void *);
68 : /** Function to free update arguments if they can't be run. */
69 : void (*free_update_arg_fn)(void *);
70 : /** Array of n_threads update arguments. */
71 : void **update_args;
72 : /** Event to notice when another thread has sent a reply. */
73 : struct event *reply_event;
74 : void (*reply_cb)(threadpool_t *);
75 :
76 : /** Number of elements in threads. */
77 : int n_threads;
78 : /** Mutex to protect all the above fields. */
79 : tor_mutex_t lock;
80 :
81 : /** A reply queue to use when constructing new threads. */
82 : replyqueue_t *reply_queue;
83 :
84 : /** Functions used to allocate and free thread state. */
85 : void *(*new_thread_state_fn)(void*);
86 : void (*free_thread_state_fn)(void*);
87 : void *new_thread_state_arg;
88 : };
89 :
90 : /** Used to put a workqueue_priority_t value into a bitfield. */
91 : #define workqueue_priority_bitfield_t ENUM_BF(workqueue_priority_t)
92 : /** Number of bits needed to hold all legal values of workqueue_priority_t */
93 : #define WORKQUEUE_PRIORITY_BITS 2
94 :
95 : struct workqueue_entry_t {
96 : /** The next workqueue_entry_t that's pending on the same thread or
97 : * reply queue. */
98 : TOR_TAILQ_ENTRY(workqueue_entry_t) next_work;
99 : /** The threadpool to which this workqueue_entry_t was assigned. This field
100 : * is set when the workqueue_entry_t is created, and won't be cleared until
101 : * after it's handled in the main thread. */
102 : struct threadpool_t *on_pool;
103 : /** True iff this entry is waiting for a worker to start processing it. */
104 : uint8_t pending;
105 : /** Priority of this entry. */
106 : workqueue_priority_bitfield_t priority : WORKQUEUE_PRIORITY_BITS;
107 : /** Function to run in the worker thread. */
108 : workqueue_reply_t (*fn)(void *state, void *arg);
109 : /** Function to run while processing the reply queue. */
110 : void (*reply_fn)(void *arg);
111 : /** Argument for the above functions. */
112 : void *arg;
113 : };
114 :
115 : struct replyqueue_t {
116 : /** Mutex to protect the answers field */
117 : tor_mutex_t lock;
118 : /** Doubly-linked list of answers that the reply queue needs to handle. */
119 : TOR_TAILQ_HEAD(, workqueue_entry_t) answers;
120 :
121 : /** Mechanism to wake up the main thread when it is receiving answers. */
122 : alert_sockets_t alert;
123 : };
124 :
125 : /** A worker thread represents a single thread in a thread pool. */
126 : typedef struct workerthread_t {
127 : /** Which thread it this? In range 0..in_pool->n_threads-1 */
128 : int index;
129 : /** The pool this thread is a part of. */
130 : struct threadpool_t *in_pool;
131 : /** User-supplied state field that we pass to the worker functions of each
132 : * work item. */
133 : void *state;
134 : /** Reply queue to which we pass our results. */
135 : replyqueue_t *reply_queue;
136 : /** The current update generation of this thread */
137 : unsigned generation;
138 : /** One over the probability of taking work from a lower-priority queue. */
139 : int32_t lower_priority_chance;
140 : } workerthread_t;
141 :
142 : static void queue_reply(replyqueue_t *queue, workqueue_entry_t *work);
143 :
144 : /** Allocate and return a new workqueue_entry_t, set up to run the function
145 : * <b>fn</b> in the worker thread, and <b>reply_fn</b> in the main
146 : * thread. See threadpool_queue_work() for full documentation. */
147 : static workqueue_entry_t *
148 70007 : workqueue_entry_new(workqueue_reply_t (*fn)(void*, void*),
149 : void (*reply_fn)(void*),
150 : void *arg)
151 : {
152 70007 : workqueue_entry_t *ent = tor_malloc_zero(sizeof(workqueue_entry_t));
153 70007 : ent->fn = fn;
154 70007 : ent->reply_fn = reply_fn;
155 70007 : ent->arg = arg;
156 70007 : ent->priority = WQ_PRI_HIGH;
157 70007 : return ent;
158 : }
159 :
160 : #define workqueue_entry_free(ent) \
161 : FREE_AND_NULL(workqueue_entry_t, workqueue_entry_free_, (ent))
162 :
163 : /**
164 : * Release all storage held in <b>ent</b>. Call only when <b>ent</b> is not on
165 : * any queue.
166 : */
167 : static void
168 70000 : workqueue_entry_free_(workqueue_entry_t *ent)
169 : {
170 70000 : if (!ent)
171 : return;
172 70000 : memset(ent, 0xf0, sizeof(*ent));
173 70000 : tor_free(ent);
174 : }
175 :
176 : /**
177 : * Cancel a workqueue_entry_t that has been returned from
178 : * threadpool_queue_work.
179 : *
180 : * You must not call this function on any work whose reply function has been
181 : * executed in the main thread; that will cause undefined behavior (probably,
182 : * a crash).
183 : *
184 : * If the work is cancelled, this function return the argument passed to the
185 : * work function. It is the caller's responsibility to free this storage.
186 : *
187 : * This function will have no effect if the worker thread has already executed
188 : * or begun to execute the work item. In that case, it will return NULL.
189 : */
190 : void *
191 10 : workqueue_entry_cancel(workqueue_entry_t *ent)
192 : {
193 10 : int cancelled = 0;
194 10 : void *result = NULL;
195 10 : tor_mutex_acquire(&ent->on_pool->lock);
196 10 : workqueue_priority_t prio = ent->priority;
197 10 : if (ent->pending) {
198 9 : TOR_TAILQ_REMOVE(&ent->on_pool->work[prio], ent, next_work);
199 9 : cancelled = 1;
200 9 : result = ent->arg;
201 : }
202 10 : tor_mutex_release(&ent->on_pool->lock);
203 :
204 10 : if (cancelled) {
205 9 : workqueue_entry_free(ent);
206 : }
207 10 : return result;
208 : }
209 :
210 : /**DOCDOC
211 :
212 : must hold lock */
213 : static int
214 70276 : worker_thread_has_work(workerthread_t *thread)
215 : {
216 70276 : unsigned i;
217 84371 : for (i = WORKQUEUE_PRIORITY_FIRST; i <= WORKQUEUE_PRIORITY_LAST; ++i) {
218 84130 : if (!TOR_TAILQ_EMPTY(&thread->in_pool->work[i]))
219 : return 1;
220 : }
221 241 : return thread->generation != thread->in_pool->generation;
222 : }
223 :
224 : /** Extract the next workqueue_entry_t from the the thread's pool, removing
225 : * it from the relevant queues and marking it as non-pending.
226 : *
227 : * The caller must hold the lock. */
228 : static workqueue_entry_t *
229 69991 : worker_thread_extract_next_work(workerthread_t *thread)
230 : {
231 69991 : threadpool_t *pool = thread->in_pool;
232 69991 : work_tailq_t *queue = NULL, *this_queue;
233 69991 : unsigned i;
234 84502 : for (i = WORKQUEUE_PRIORITY_FIRST; i <= WORKQUEUE_PRIORITY_LAST; ++i) {
235 84311 : this_queue = &pool->work[i];
236 84311 : if (!TOR_TAILQ_EMPTY(this_queue)) {
237 70746 : queue = this_queue;
238 70746 : if (! crypto_fast_rng_one_in_n(get_thread_fast_rng(),
239 : thread->lower_priority_chance)) {
240 : /* Usually we'll just break now, so that we can get out of the loop
241 : * and use the queue where we found work. But with a small
242 : * probability, we'll keep looking for lower priority work, so that
243 : * we don't ignore our low-priority queues entirely. */
244 : break;
245 : }
246 : }
247 : }
248 :
249 69991 : if (queue == NULL)
250 : return NULL;
251 :
252 69991 : workqueue_entry_t *work = TOR_TAILQ_FIRST(queue);
253 69991 : TOR_TAILQ_REMOVE(queue, work, next_work);
254 69991 : work->pending = 0;
255 69991 : return work;
256 : }
257 :
258 : /**
259 : * Main function for the worker thread.
260 : */
261 : static void
262 56 : worker_thread_main(void *thread_)
263 : {
264 56 : workerthread_t *thread = thread_;
265 56 : threadpool_t *pool = thread->in_pool;
266 56 : workqueue_entry_t *work;
267 56 : workqueue_reply_t result;
268 :
269 56 : tor_mutex_acquire(&pool->lock);
270 : while (1) {
271 : /* lock must be held at this point. */
272 70276 : while (worker_thread_has_work(thread)) {
273 : /* lock must be held at this point. */
274 70047 : if (thread->in_pool->generation != thread->generation) {
275 56 : void *arg = thread->in_pool->update_args[thread->index];
276 56 : thread->in_pool->update_args[thread->index] = NULL;
277 56 : workqueue_reply_t (*update_fn)(void*,void*) =
278 56 : thread->in_pool->update_fn;
279 56 : thread->generation = thread->in_pool->generation;
280 56 : tor_mutex_release(&pool->lock);
281 :
282 55 : workqueue_reply_t r = update_fn(thread->state, arg);
283 :
284 52 : if (r != WQ_RPL_REPLY) {
285 : return;
286 : }
287 :
288 0 : tor_mutex_acquire(&pool->lock);
289 0 : continue;
290 : }
291 69991 : work = worker_thread_extract_next_work(thread);
292 69991 : if (BUG(work == NULL))
293 : break;
294 69991 : tor_mutex_release(&pool->lock);
295 :
296 : /* We run the work function without holding the thread lock. This
297 : * is the main thread's first opportunity to give us more work. */
298 69983 : result = work->fn(thread->state, work->arg);
299 :
300 : /* Queue the reply for the main thread. */
301 68893 : queue_reply(thread->reply_queue, work);
302 :
303 : /* We may need to exit the thread. */
304 69927 : if (result != WQ_RPL_REPLY) {
305 : return;
306 : }
307 69927 : tor_mutex_acquire(&pool->lock);
308 : }
309 : /* At this point the lock is held, and there is no work in this thread's
310 : * queue. */
311 :
312 : /* TODO: support an idle-function */
313 :
314 : /* Okay. Now, wait till somebody has work for us. */
315 229 : if (tor_cond_wait(&pool->condition, &pool->lock, NULL) < 0) {
316 0 : log_warn(LD_GENERAL, "Fail tor_cond_wait.");
317 : }
318 : }
319 : }
320 :
321 : /** Put a reply on the reply queue. The reply must not currently be on
322 : * any thread's work queue. */
323 : static void
324 68756 : queue_reply(replyqueue_t *queue, workqueue_entry_t *work)
325 : {
326 68756 : int was_empty;
327 68756 : tor_mutex_acquire(&queue->lock);
328 69991 : was_empty = TOR_TAILQ_EMPTY(&queue->answers);
329 69991 : TOR_TAILQ_INSERT_TAIL(&queue->answers, work, next_work);
330 69991 : tor_mutex_release(&queue->lock);
331 :
332 69986 : if (was_empty) {
333 19050 : if (queue->alert.alert_fn(queue->alert.write_fd) < 0) {
334 : /* XXXX complain! */
335 69986 : }
336 : }
337 69986 : }
338 :
339 : /** Allocate and start a new worker thread to use state object <b>state</b>,
340 : * and send responses to <b>replyqueue</b>. */
341 : static workerthread_t *
342 56 : workerthread_new(int32_t lower_priority_chance,
343 : void *state, threadpool_t *pool, replyqueue_t *replyqueue)
344 : {
345 56 : workerthread_t *thr = tor_malloc_zero(sizeof(workerthread_t));
346 56 : thr->state = state;
347 56 : thr->reply_queue = replyqueue;
348 56 : thr->in_pool = pool;
349 56 : thr->lower_priority_chance = lower_priority_chance;
350 :
351 56 : if (spawn_func(worker_thread_main, thr) < 0) {
352 : //LCOV_EXCL_START
353 : tor_assert_nonfatal_unreached();
354 : log_err(LD_GENERAL, "Can't launch worker thread.");
355 : tor_free(thr);
356 : return NULL;
357 : //LCOV_EXCL_STOP
358 : }
359 :
360 : return thr;
361 : }
362 :
363 : /**
364 : * Queue an item of work for a thread in a thread pool. The function
365 : * <b>fn</b> will be run in a worker thread, and will receive as arguments the
366 : * thread's state object, and the provided object <b>arg</b>. It must return
367 : * one of WQ_RPL_REPLY, WQ_RPL_ERROR, or WQ_RPL_SHUTDOWN.
368 : *
369 : * Regardless of its return value, the function <b>reply_fn</b> will later be
370 : * run in the main thread when it invokes replyqueue_process(), and will
371 : * receive as its argument the same <b>arg</b> object. It's the reply
372 : * function's responsibility to free the work object.
373 : *
374 : * On success, return a workqueue_entry_t object that can be passed to
375 : * workqueue_entry_cancel(). On failure, return NULL. (Failure is not
376 : * currently possible, but callers should check anyway.)
377 : *
378 : * Items are executed in a loose priority order -- each thread will usually
379 : * take from the queued work with the highest prioirity, but will occasionally
380 : * visit lower-priority queues to keep them from starving completely.
381 : *
382 : * Note that because of priorities and thread behavior, work items may not
383 : * be executed strictly in order.
384 : */
385 : workqueue_entry_t *
386 70007 : threadpool_queue_work_priority(threadpool_t *pool,
387 : workqueue_priority_t prio,
388 : workqueue_reply_t (*fn)(void *, void *),
389 : void (*reply_fn)(void *),
390 : void *arg)
391 : {
392 70007 : tor_assert(((int)prio) >= WORKQUEUE_PRIORITY_FIRST &&
393 : ((int)prio) <= WORKQUEUE_PRIORITY_LAST);
394 :
395 70007 : workqueue_entry_t *ent = workqueue_entry_new(fn, reply_fn, arg);
396 70007 : ent->on_pool = pool;
397 70007 : ent->pending = 1;
398 70007 : ent->priority = prio;
399 :
400 70007 : tor_mutex_acquire(&pool->lock);
401 :
402 70007 : TOR_TAILQ_INSERT_TAIL(&pool->work[prio], ent, next_work);
403 :
404 70007 : tor_cond_signal_one(&pool->condition);
405 :
406 70007 : tor_mutex_release(&pool->lock);
407 :
408 70007 : return ent;
409 : }
410 :
411 : /** As threadpool_queue_work_priority(), but assumes WQ_PRI_HIGH */
412 : workqueue_entry_t *
413 55879 : threadpool_queue_work(threadpool_t *pool,
414 : workqueue_reply_t (*fn)(void *, void *),
415 : void (*reply_fn)(void *),
416 : void *arg)
417 : {
418 55879 : return threadpool_queue_work_priority(pool, WQ_PRI_HIGH, fn, reply_fn, arg);
419 : }
420 :
421 : /**
422 : * Queue a copy of a work item for every thread in a pool. This can be used,
423 : * for example, to tell the threads to update some parameter in their states.
424 : *
425 : * Arguments are as for <b>threadpool_queue_work</b>, except that the
426 : * <b>arg</b> value is passed to <b>dup_fn</b> once per each thread to
427 : * make a copy of it.
428 : *
429 : * UPDATE FUNCTIONS MUST BE IDEMPOTENT. We do not guarantee that every update
430 : * will be run. If a new update is scheduled before the old update finishes
431 : * running, then the new will replace the old in any threads that haven't run
432 : * it yet.
433 : *
434 : * Return 0 on success, -1 on failure.
435 : */
436 : int
437 7 : threadpool_queue_update(threadpool_t *pool,
438 : void *(*dup_fn)(void *),
439 : workqueue_reply_t (*fn)(void *, void *),
440 : void (*free_fn)(void *),
441 : void *arg)
442 : {
443 7 : int i, n_threads;
444 7 : void (*old_args_free_fn)(void *arg);
445 7 : void **old_args;
446 7 : void **new_args;
447 :
448 7 : tor_mutex_acquire(&pool->lock);
449 7 : n_threads = pool->n_threads;
450 7 : old_args = pool->update_args;
451 7 : old_args_free_fn = pool->free_update_arg_fn;
452 :
453 7 : new_args = tor_calloc(n_threads, sizeof(void*));
454 70 : for (i = 0; i < n_threads; ++i) {
455 56 : if (dup_fn)
456 0 : new_args[i] = dup_fn(arg);
457 : else
458 56 : new_args[i] = arg;
459 : }
460 :
461 7 : pool->update_args = new_args;
462 7 : pool->free_update_arg_fn = free_fn;
463 7 : pool->update_fn = fn;
464 7 : ++pool->generation;
465 :
466 7 : tor_cond_signal_all(&pool->condition);
467 :
468 7 : tor_mutex_release(&pool->lock);
469 :
470 7 : if (old_args) {
471 0 : for (i = 0; i < n_threads; ++i) {
472 0 : if (old_args[i] && old_args_free_fn)
473 0 : old_args_free_fn(old_args[i]);
474 : }
475 0 : tor_free(old_args);
476 : }
477 :
478 7 : return 0;
479 : }
480 :
481 : /** Don't have more than this many threads per pool. */
482 : #define MAX_THREADS 1024
483 :
484 : /** For half of our threads, choose lower priority queues with probability
485 : * 1/N for each of these values. Both are chosen somewhat arbitrarily. If
486 : * CHANCE_PERMISSIVE is too low, then we have a risk of low-priority tasks
487 : * stalling forever. If it's too high, we have a risk of low-priority tasks
488 : * grabbing half of the threads. */
489 : #define CHANCE_PERMISSIVE 37
490 : #define CHANCE_STRICT INT32_MAX
491 :
492 : /** Launch threads until we have <b>n</b>. */
493 : static int
494 7 : threadpool_start_threads(threadpool_t *pool, int n)
495 : {
496 7 : if (BUG(n < 0))
497 : return -1; // LCOV_EXCL_LINE
498 7 : if (n > MAX_THREADS)
499 : n = MAX_THREADS;
500 :
501 7 : tor_mutex_acquire(&pool->lock);
502 :
503 7 : if (pool->n_threads < n)
504 7 : pool->threads = tor_reallocarray(pool->threads,
505 : sizeof(workerthread_t*), n);
506 :
507 63 : while (pool->n_threads < n) {
508 : /* For half of our threads, we'll choose lower priorities permissively;
509 : * for the other half, we'll stick more strictly to higher priorities.
510 : * This keeps slow low-priority tasks from taking over completely. */
511 56 : int32_t chance = (pool->n_threads & 1) ? CHANCE_STRICT : CHANCE_PERMISSIVE;
512 :
513 56 : void *state = pool->new_thread_state_fn(pool->new_thread_state_arg);
514 56 : workerthread_t *thr = workerthread_new(chance,
515 : state, pool, pool->reply_queue);
516 :
517 56 : if (!thr) {
518 : //LCOV_EXCL_START
519 : tor_assert_nonfatal_unreached();
520 : pool->free_thread_state_fn(state);
521 : tor_mutex_release(&pool->lock);
522 : return -1;
523 : //LCOV_EXCL_STOP
524 : }
525 56 : thr->index = pool->n_threads;
526 56 : pool->threads[pool->n_threads++] = thr;
527 : }
528 7 : tor_mutex_release(&pool->lock);
529 :
530 7 : return 0;
531 : }
532 :
533 : /**
534 : * Construct a new thread pool with <b>n</b> worker threads, configured to
535 : * send their output to <b>replyqueue</b>. The threads' states will be
536 : * constructed with the <b>new_thread_state_fn</b> call, receiving <b>arg</b>
537 : * as its argument. When the threads close, they will call
538 : * <b>free_thread_state_fn</b> on their states.
539 : */
540 : threadpool_t *
541 7 : threadpool_new(int n_threads,
542 : replyqueue_t *replyqueue,
543 : void *(*new_thread_state_fn)(void*),
544 : void (*free_thread_state_fn)(void*),
545 : void *arg)
546 : {
547 7 : threadpool_t *pool;
548 7 : pool = tor_malloc_zero(sizeof(threadpool_t));
549 7 : tor_mutex_init_nonrecursive(&pool->lock);
550 7 : tor_cond_init(&pool->condition);
551 7 : unsigned i;
552 35 : for (i = WORKQUEUE_PRIORITY_FIRST; i <= WORKQUEUE_PRIORITY_LAST; ++i) {
553 21 : TOR_TAILQ_INIT(&pool->work[i]);
554 : }
555 :
556 7 : pool->new_thread_state_fn = new_thread_state_fn;
557 7 : pool->new_thread_state_arg = arg;
558 7 : pool->free_thread_state_fn = free_thread_state_fn;
559 7 : pool->reply_queue = replyqueue;
560 :
561 7 : if (threadpool_start_threads(pool, n_threads) < 0) {
562 : //LCOV_EXCL_START
563 : tor_assert_nonfatal_unreached();
564 : tor_cond_uninit(&pool->condition);
565 : tor_mutex_uninit(&pool->lock);
566 : tor_free(pool);
567 : return NULL;
568 : //LCOV_EXCL_STOP
569 : }
570 :
571 : return pool;
572 : }
573 :
574 : /** Return the reply queue associated with a given thread pool. */
575 : replyqueue_t *
576 0 : threadpool_get_replyqueue(threadpool_t *tp)
577 : {
578 0 : return tp->reply_queue;
579 : }
580 :
581 : /** Allocate a new reply queue. Reply queues are used to pass results from
582 : * worker threads to the main thread. Since the main thread is running an
583 : * IO-centric event loop, it needs to get woken up with means other than a
584 : * condition variable. */
585 : replyqueue_t *
586 7 : replyqueue_new(uint32_t alertsocks_flags)
587 : {
588 7 : replyqueue_t *rq;
589 :
590 7 : rq = tor_malloc_zero(sizeof(replyqueue_t));
591 7 : if (alert_sockets_create(&rq->alert, alertsocks_flags) < 0) {
592 : //LCOV_EXCL_START
593 : tor_free(rq);
594 : return NULL;
595 : //LCOV_EXCL_STOP
596 : }
597 :
598 7 : tor_mutex_init(&rq->lock);
599 7 : TOR_TAILQ_INIT(&rq->answers);
600 :
601 7 : return rq;
602 : }
603 :
604 : /** Internal: Run from the libevent mainloop when there is work to handle in
605 : * the reply queue handler. */
606 : static void
607 18995 : reply_event_cb(evutil_socket_t sock, short events, void *arg)
608 : {
609 18995 : threadpool_t *tp = arg;
610 18995 : (void) sock;
611 18995 : (void) events;
612 18995 : replyqueue_process(tp->reply_queue);
613 18995 : if (tp->reply_cb)
614 18995 : tp->reply_cb(tp);
615 18995 : }
616 :
617 : /** Register the threadpool <b>tp</b>'s reply queue with Tor's global
618 : * libevent mainloop. If <b>cb</b> is provided, it is run after
619 : * each time there is work to process from the reply queue. Return 0 on
620 : * success, -1 on failure.
621 : */
622 : int
623 7 : threadpool_register_reply_event(threadpool_t *tp,
624 : void (*cb)(threadpool_t *tp))
625 : {
626 7 : struct event_base *base = tor_libevent_get_base();
627 :
628 7 : if (tp->reply_event) {
629 0 : tor_event_free(tp->reply_event);
630 : }
631 14 : tp->reply_event = tor_event_new(base,
632 7 : tp->reply_queue->alert.read_fd,
633 : EV_READ|EV_PERSIST,
634 : reply_event_cb,
635 : tp);
636 7 : tor_assert(tp->reply_event);
637 7 : tp->reply_cb = cb;
638 7 : return event_add(tp->reply_event, NULL);
639 : }
640 :
641 : /**
642 : * Process all pending replies on a reply queue. The main thread should call
643 : * this function every time the socket returned by replyqueue_get_socket() is
644 : * readable.
645 : */
646 : void
647 18995 : replyqueue_process(replyqueue_t *queue)
648 : {
649 18995 : int r = queue->alert.drain_fn(queue->alert.read_fd);
650 18995 : if (r < 0) {
651 : //LCOV_EXCL_START
652 : static ratelim_t warn_limit = RATELIM_INIT(7200);
653 : log_fn_ratelim(&warn_limit, LOG_WARN, LD_GENERAL,
654 : "Failure from drain_fd: %s",
655 : tor_socket_strerror(-r));
656 : //LCOV_EXCL_STOP
657 : }
658 :
659 18995 : tor_mutex_acquire(&queue->lock);
660 88986 : while (!TOR_TAILQ_EMPTY(&queue->answers)) {
661 : /* lock must be held at this point.*/
662 69991 : workqueue_entry_t *work = TOR_TAILQ_FIRST(&queue->answers);
663 69991 : TOR_TAILQ_REMOVE(&queue->answers, work, next_work);
664 69991 : tor_mutex_release(&queue->lock);
665 69991 : work->on_pool = NULL;
666 :
667 69991 : work->reply_fn(work->arg);
668 69991 : workqueue_entry_free(work);
669 :
670 69991 : tor_mutex_acquire(&queue->lock);
671 : }
672 :
673 18995 : tor_mutex_release(&queue->lock);
674 18995 : }
|