LCOV - code coverage report
Current view: top level - lib/memarea - memarea.c (source / functions) Hit Total Coverage
Test: lcov.info Lines: 109 109 100.0 %
Date: 2021-11-24 03:28:48 Functions: 14 14 100.0 %

          Line data    Source code
       1             : /* Copyright (c) 2008-2021, The Tor Project, Inc. */
       2             : /* See LICENSE for licensing information */
       3             : 
       4             : /**
       5             :  * \file memarea.c
       6             :  *
       7             :  * \brief Implementation for memarea_t, an allocator for allocating lots of
       8             :  * small objects that will be freed all at once.
       9             :  */
      10             : 
      11             : #include "orconfig.h"
      12             : #include "lib/memarea/memarea.h"
      13             : 
      14             : #include <stdlib.h>
      15             : #include <string.h>
      16             : 
      17             : #include "lib/arch/bytes.h"
      18             : #include "lib/cc/torint.h"
      19             : #include "lib/smartlist_core/smartlist_core.h"
      20             : #include "lib/smartlist_core/smartlist_foreach.h"
      21             : #include "lib/log/log.h"
      22             : #include "lib/log/util_bug.h"
      23             : #include "lib/malloc/malloc.h"
      24             : 
      25             : #ifndef DISABLE_MEMORY_SENTINELS
      26             : 
      27             : /** If true, we try to detect any attempts to write beyond the length of a
      28             :  * memarea. */
      29             : #define USE_SENTINELS
      30             : 
      31             : /** All returned pointers should be aligned to the nearest multiple of this
      32             :  * value. */
      33             : #define MEMAREA_ALIGN SIZEOF_VOID_P
      34             : 
      35             : /** A value which, when masked out of a pointer, produces a maximally aligned
      36             :  * pointer. */
      37             : #if MEMAREA_ALIGN == 4
      38             : #define MEMAREA_ALIGN_MASK ((uintptr_t)3)
      39             : #elif MEMAREA_ALIGN == 8
      40             : #define MEMAREA_ALIGN_MASK ((uintptr_t)7)
      41             : #else
      42             : #error "void* is neither 4 nor 8 bytes long."
      43             : #endif /* MEMAREA_ALIGN == 4 || ... */
      44             : 
      45             : #if defined(__GNUC__) && defined(FLEXIBLE_ARRAY_MEMBER)
      46             : #define USE_ALIGNED_ATTRIBUTE
      47             : /** Name for the 'memory' member of a memory chunk. */
      48             : #define U_MEM mem
      49             : #else
      50             : #define U_MEM u.mem
      51             : #endif /* defined(__GNUC__) && defined(FLEXIBLE_ARRAY_MEMBER) */
      52             : 
      53             : #ifdef USE_SENTINELS
      54             : /** Magic value that we stick at the end of a memarea so we can make sure
      55             :  * there are no run-off-the-end bugs. */
      56             : #define SENTINEL_VAL 0x90806622u
      57             : /** How many bytes per area do we devote to the sentinel? */
      58             : #define SENTINEL_LEN sizeof(uint32_t)
      59             : /** Given a mem_area_chunk_t with SENTINEL_LEN extra bytes allocated at the
      60             :  * end, set those bytes. */
      61             : #define SET_SENTINEL(chunk)                                     \
      62             :   STMT_BEGIN                                                    \
      63             :   set_uint32( &(chunk)->U_MEM[chunk->mem_size], SENTINEL_VAL ); \
      64             :   STMT_END
      65             : /** Assert that the sentinel on a memarea is set correctly. */
      66             : #define CHECK_SENTINEL(chunk)                                           \
      67             :   STMT_BEGIN                                                            \
      68             :   uint32_t sent_val = get_uint32(&(chunk)->U_MEM[chunk->mem_size]);     \
      69             :   tor_assert(sent_val == SENTINEL_VAL);                                 \
      70             :   STMT_END
      71             : #else /* !defined(USE_SENTINELS) */
      72             : #define SENTINEL_LEN 0
      73             : #define SET_SENTINEL(chunk) STMT_NIL
      74             : #define CHECK_SENTINEL(chunk) STMT_NIL
      75             : #endif /* defined(USE_SENTINELS) */
      76             : 
      77             : /** Increment <b>ptr</b> until it is aligned to MEMAREA_ALIGN. */
      78             : static inline void *
      79     1340496 : realign_pointer(void *ptr)
      80             : {
      81     1340496 :   uintptr_t x = (uintptr_t)ptr;
      82     1340496 :   x = (x+MEMAREA_ALIGN_MASK) & ~MEMAREA_ALIGN_MASK;
      83             :   /* Reinstate this if bug 930 ever reappears
      84             :   tor_assert(((void*)x) >= ptr);
      85             :   */
      86     1340496 :   return (void*)x;
      87             : }
      88             : 
      89             : /** Implements part of a memarea.  New memory is carved off from chunk->mem in
      90             :  * increasing order until a request is too big, at which point a new chunk is
      91             :  * allocated. */
      92             : typedef struct memarea_chunk_t {
      93             :   /** Next chunk in this area. Only kept around so we can free it. */
      94             :   struct memarea_chunk_t *next_chunk;
      95             :   size_t mem_size; /**< How much RAM is available in mem, total? */
      96             :   char *next_mem; /**< Next position in mem to allocate data at.  If it's
      97             :                    * equal to mem+mem_size, this chunk is full. */
      98             : #ifdef USE_ALIGNED_ATTRIBUTE
      99             :   /** Actual content of the memory chunk. */
     100             :   char mem[FLEXIBLE_ARRAY_MEMBER] __attribute__((aligned(MEMAREA_ALIGN)));
     101             : #else
     102             :   union {
     103             :     char mem[1]; /**< Memory space in this chunk.  */
     104             :     void *void_for_alignment_; /**< Dummy; used to make sure mem is aligned. */
     105             :   } u; /**< Union used to enforce alignment when we don't have support for
     106             :         * doing it right. */
     107             : #endif /* defined(USE_ALIGNED_ATTRIBUTE) */
     108             : } memarea_chunk_t;
     109             : 
     110             : /** How many bytes are needed for overhead before we get to the memory part
     111             :  * of a chunk? */
     112             : #define CHUNK_HEADER_SIZE offsetof(memarea_chunk_t, U_MEM)
     113             : 
     114             : /** What's the smallest that we'll allocate a chunk? */
     115             : #define CHUNK_SIZE 4096
     116             : 
     117             : /** A memarea_t is an allocation region for a set of small memory requests
     118             :  * that will all be freed at once. */
     119             : struct memarea_t {
     120             :   memarea_chunk_t *first; /**< Top of the chunk stack: never NULL. */
     121             : };
     122             : 
     123             : /** Helper: allocate a new memarea chunk of around <b>chunk_size</b> bytes. */
     124             : static memarea_chunk_t *
     125       67182 : alloc_chunk(size_t sz)
     126             : {
     127       67182 :   tor_assert(sz < SIZE_T_CEILING);
     128             : 
     129       67182 :   size_t chunk_size = sz < CHUNK_SIZE ? CHUNK_SIZE : sz;
     130       67182 :   memarea_chunk_t *res;
     131       67182 :   chunk_size += SENTINEL_LEN;
     132       67182 :   res = tor_malloc(chunk_size);
     133       67182 :   res->next_chunk = NULL;
     134       67182 :   res->mem_size = chunk_size - CHUNK_HEADER_SIZE - SENTINEL_LEN;
     135       67182 :   res->next_mem = res->U_MEM;
     136       67182 :   tor_assert(res->next_mem+res->mem_size+SENTINEL_LEN ==
     137             :              ((char*)res)+chunk_size);
     138       67182 :   tor_assert(realign_pointer(res->next_mem) == res->next_mem);
     139       67182 :   SET_SENTINEL(res);
     140       67182 :   return res;
     141             : }
     142             : 
     143             : /** Release <b>chunk</b> from a memarea. */
     144             : static void
     145       67182 : memarea_chunk_free_unchecked(memarea_chunk_t *chunk)
     146             : {
     147       67182 :   CHECK_SENTINEL(chunk);
     148       67182 :   tor_free(chunk);
     149       67182 : }
     150             : 
     151             : /** Allocate and return new memarea. */
     152             : memarea_t *
     153       63085 : memarea_new(void)
     154             : {
     155       63085 :   memarea_t *head = tor_malloc(sizeof(memarea_t));
     156       63085 :   head->first = alloc_chunk(CHUNK_SIZE);
     157       63085 :   return head;
     158             : }
     159             : 
     160             : /** Free <b>area</b>, invalidating all pointers returned from memarea_alloc()
     161             :  * and friends for this area */
     162             : void
     163       63085 : memarea_drop_all_(memarea_t *area)
     164             : {
     165       63085 :   memarea_chunk_t *chunk, *next;
     166      129854 :   for (chunk = area->first; chunk; chunk = next) {
     167       66769 :     next = chunk->next_chunk;
     168       66769 :     memarea_chunk_free_unchecked(chunk);
     169             :   }
     170       63085 :   area->first = NULL; /*fail fast on */
     171       63085 :   tor_free(area);
     172       63085 : }
     173             : 
     174             : /** Forget about having allocated anything in <b>area</b>, and free some of
     175             :  * the backing storage associated with it, as appropriate. Invalidates all
     176             :  * pointers returned from memarea_alloc() for this area. */
     177             : void
     178        2405 : memarea_clear(memarea_t *area)
     179             : {
     180        2405 :   memarea_chunk_t *chunk, *next;
     181        2405 :   if (area->first->next_chunk) {
     182         484 :     for (chunk = area->first->next_chunk; chunk; chunk = next) {
     183         413 :       next = chunk->next_chunk;
     184         413 :       memarea_chunk_free_unchecked(chunk);
     185             :     }
     186          71 :     area->first->next_chunk = NULL;
     187             :   }
     188        2405 :   area->first->next_mem = area->first->U_MEM;
     189        2405 : }
     190             : 
     191             : /** Return true iff <b>p</b> is in a range that has been returned by an
     192             :  * allocation from <b>area</b>. */
     193             : int
     194        4104 : memarea_owns_ptr(const memarea_t *area, const void *p)
     195             : {
     196        4104 :   memarea_chunk_t *chunk;
     197        4104 :   const char *ptr = p;
     198        4108 :   for (chunk = area->first; chunk; chunk = chunk->next_chunk) {
     199        4105 :     if (ptr >= chunk->U_MEM && ptr < chunk->next_mem)
     200             :       return 1;
     201             :   }
     202             :   return 0;
     203             : }
     204             : 
     205             : /** Return a pointer to a chunk of memory in <b>area</b> of at least <b>sz</b>
     206             :  * bytes.  <b>sz</b> should be significantly smaller than the area's chunk
     207             :  * size, though we can deal if it isn't. */
     208             : void *
     209     1273305 : memarea_alloc(memarea_t *area, size_t sz)
     210             : {
     211     1273305 :   memarea_chunk_t *chunk = area->first;
     212     1273305 :   char *result;
     213     1273305 :   tor_assert(chunk);
     214     1273305 :   CHECK_SENTINEL(chunk);
     215     1273305 :   tor_assert(sz < SIZE_T_CEILING);
     216     1273305 :   if (sz == 0)
     217             :     sz = 1;
     218     1273305 :   tor_assert(chunk->next_mem <= chunk->U_MEM + chunk->mem_size);
     219     1273305 :   const size_t space_remaining =
     220     1273305 :     (chunk->U_MEM + chunk->mem_size) - chunk->next_mem;
     221     1273305 :   if (sz > space_remaining) {
     222        4097 :     if (sz+CHUNK_HEADER_SIZE >= CHUNK_SIZE) {
     223             :       /* This allocation is too big.  Stick it in a special chunk, and put
     224             :        * that chunk second in the list. */
     225         174 :       memarea_chunk_t *new_chunk = alloc_chunk(sz+CHUNK_HEADER_SIZE);
     226         174 :       new_chunk->next_chunk = chunk->next_chunk;
     227         174 :       chunk->next_chunk = new_chunk;
     228         174 :       chunk = new_chunk;
     229             :     } else {
     230        3923 :       memarea_chunk_t *new_chunk = alloc_chunk(CHUNK_SIZE);
     231        3923 :       new_chunk->next_chunk = chunk;
     232        3923 :       area->first = chunk = new_chunk;
     233             :     }
     234        4097 :     tor_assert(chunk->mem_size >= sz);
     235             :   }
     236     1273305 :   result = chunk->next_mem;
     237     1273305 :   chunk->next_mem = chunk->next_mem + sz;
     238             :   /* Reinstate these if bug 930 ever comes back
     239             :   tor_assert(chunk->next_mem >= chunk->U_MEM);
     240             :   tor_assert(chunk->next_mem <= chunk->U_MEM+chunk->mem_size);
     241             :   */
     242     1273305 :   chunk->next_mem = realign_pointer(chunk->next_mem);
     243     1273305 :   return result;
     244             : }
     245             : 
     246             : /** As memarea_alloc(), but clears the memory it returns. */
     247             : void *
     248      184143 : memarea_alloc_zero(memarea_t *area, size_t sz)
     249             : {
     250      184143 :   void *result = memarea_alloc(area, sz);
     251      184143 :   memset(result, 0, sz);
     252      184143 :   return result;
     253             : }
     254             : 
     255             : /** As memdup, but returns the memory from <b>area</b>. */
     256             : void *
     257      150579 : memarea_memdup(memarea_t *area, const void *s, size_t n)
     258             : {
     259      150579 :   char *result = memarea_alloc(area, n);
     260      150579 :   memcpy(result, s, n);
     261      150579 :   return result;
     262             : }
     263             : 
     264             : /** As strdup, but returns the memory from <b>area</b>. */
     265             : char *
     266         485 : memarea_strdup(memarea_t *area, const char *s)
     267             : {
     268         485 :   return memarea_memdup(area, s, strlen(s)+1);
     269             : }
     270             : 
     271             : /** As strndup, but returns the memory from <b>area</b>. */
     272             : char *
     273      191900 : memarea_strndup(memarea_t *area, const char *s, size_t n)
     274             : {
     275      191900 :   size_t ln = 0;
     276      191900 :   char *result;
     277      191900 :   tor_assert(n < SIZE_T_CEILING);
     278     3527740 :   for (ln = 0; ln < n && s[ln]; ++ln)
     279             :     ;
     280      191900 :   result = memarea_alloc(area, ln+1);
     281      191900 :   memcpy(result, s, ln);
     282      191900 :   result[ln]='\0';
     283      191900 :   return result;
     284             : }
     285             : 
     286             : /** Set <b>allocated_out</b> to the number of bytes allocated in <b>area</b>,
     287             :  * and <b>used_out</b> to the number of bytes currently used. */
     288             : void
     289           4 : memarea_get_stats(memarea_t *area, size_t *allocated_out, size_t *used_out)
     290             : {
     291           4 :   size_t a = 0, u = 0;
     292           4 :   memarea_chunk_t *chunk;
     293          25 :   for (chunk = area->first; chunk; chunk = chunk->next_chunk) {
     294          21 :     CHECK_SENTINEL(chunk);
     295          21 :     a += CHUNK_HEADER_SIZE + chunk->mem_size;
     296          21 :     tor_assert(chunk->next_mem >= chunk->U_MEM);
     297          21 :     u += CHUNK_HEADER_SIZE + (chunk->next_mem - chunk->U_MEM);
     298             :   }
     299           4 :   *allocated_out = a;
     300           4 :   *used_out = u;
     301           4 : }
     302             : 
     303             : /** Assert that <b>area</b> is okay. */
     304             : void
     305           1 : memarea_assert_ok(memarea_t *area)
     306             : {
     307           1 :   memarea_chunk_t *chunk;
     308           1 :   tor_assert(area->first);
     309             : 
     310          10 :   for (chunk = area->first; chunk; chunk = chunk->next_chunk) {
     311           9 :     CHECK_SENTINEL(chunk);
     312           9 :     tor_assert(chunk->next_mem >= chunk->U_MEM);
     313           9 :     tor_assert(chunk->next_mem <=
     314             :           (char*) realign_pointer(chunk->U_MEM+chunk->mem_size));
     315             :   }
     316           1 : }
     317             : 
     318             : #else /* defined(DISABLE_MEMORY_SENTINELS) */
     319             : 
     320             : struct memarea_t {
     321             :   smartlist_t *pieces;
     322             : };
     323             : 
     324             : memarea_t *
     325             : memarea_new(void)
     326             : {
     327             :   memarea_t *ma = tor_malloc_zero(sizeof(memarea_t));
     328             :   ma->pieces = smartlist_new();
     329             :   return ma;
     330             : }
     331             : void
     332             : memarea_drop_all_(memarea_t *area)
     333             : {
     334             :   memarea_clear(area);
     335             :   smartlist_free(area->pieces);
     336             :   tor_free(area);
     337             : }
     338             : void
     339             : memarea_clear(memarea_t *area)
     340             : {
     341             :   SMARTLIST_FOREACH(area->pieces, void *, p, tor_free_(p));
     342             :   smartlist_clear(area->pieces);
     343             : }
     344             : int
     345             : memarea_owns_ptr(const memarea_t *area, const void *ptr)
     346             : {
     347             :   SMARTLIST_FOREACH(area->pieces, const void *, p, if (ptr == p) return 1;);
     348             :   return 0;
     349             : }
     350             : 
     351             : void *
     352             : memarea_alloc(memarea_t *area, size_t sz)
     353             : {
     354             :   void *result = tor_malloc(sz);
     355             :   smartlist_add(area->pieces, result);
     356             :   return result;
     357             : }
     358             : 
     359             : void *
     360             : memarea_alloc_zero(memarea_t *area, size_t sz)
     361             : {
     362             :   void *result = tor_malloc_zero(sz);
     363             :   smartlist_add(area->pieces, result);
     364             :   return result;
     365             : }
     366             : void *
     367             : memarea_memdup(memarea_t *area, const void *s, size_t n)
     368             : {
     369             :   void *r = memarea_alloc(area, n);
     370             :   memcpy(r, s, n);
     371             :   return r;
     372             : }
     373             : char *
     374             : memarea_strdup(memarea_t *area, const char *s)
     375             : {
     376             :   size_t n = strlen(s);
     377             :   char *r = memarea_alloc(area, n+1);
     378             :   memcpy(r, s, n);
     379             :   r[n] = 0;
     380             :   return r;
     381             : }
     382             : char *
     383             : memarea_strndup(memarea_t *area, const char *s, size_t n)
     384             : {
     385             :   size_t ln = strnlen(s, n);
     386             :   char *r = memarea_alloc(area, ln+1);
     387             :   memcpy(r, s, ln);
     388             :   r[ln] = 0;
     389             :   return r;
     390             : }
     391             : void
     392             : memarea_get_stats(memarea_t *area,
     393             :                   size_t *allocated_out, size_t *used_out)
     394             : {
     395             :   (void)area;
     396             :   *allocated_out = *used_out = 128;
     397             : }
     398             : void
     399             : memarea_assert_ok(memarea_t *area)
     400             : {
     401             :   (void)area;
     402             : }
     403             : 
     404             : #endif /* !defined(DISABLE_MEMORY_SENTINELS) */

Generated by: LCOV version 1.14