LCOV - code coverage report
Current view: top level - lib/time - compat_time.h (source / functions) Hit Total Coverage
Test: lcov.info Lines: 2 2 100.0 %
Date: 2021-11-24 03:28:48 Functions: 1 1 100.0 %

          Line data    Source code
       1             : /* Copyright (c) 2003-2004, Roger Dingledine
       2             :  * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
       3             :  * Copyright (c) 2007-2021, The Tor Project, Inc. */
       4             : /* See LICENSE for licensing information */
       5             : 
       6             : /**
       7             :  * \file compat_time.h
       8             :  *
       9             :  * \brief Functions and types for monotonic times.
      10             :  *
      11             :  * monotime_* functions try to provide a high-resolution monotonic timer with
      12             :  * something the best resolution the system provides.  monotime_coarse_*
      13             :  * functions run faster (if the operating system gives us a way to do that)
      14             :  * but produce a less accurate timer: accuracy will probably be on the order
      15             :  * of tens of milliseconds.
      16             :  */
      17             : 
      18             : /* Q: When should I use monotonic time?
      19             :  *
      20             :  * A: If you need a time that never decreases, use monotonic time. If you need
      21             :  * to send a time to a user or another process, or store a time, use the
      22             :  * wall-clock time.
      23             :  *
      24             :  * Q: Should you use monotime or monotime_coarse as your source?
      25             :  *
      26             :  * A: Generally, you get better precision with monotime, but better
      27             :  * performance with monotime_coarse.
      28             :  *
      29             :  * Q: What is a "monotonic" time, exactly?
      30             :  *
      31             :  * A: Monotonic times are strictly non-decreasing. The difference between any
      32             :  * previous monotonic time, and the current monotonic time, is always greater
      33             :  * than *or equal to* zero.
      34             :  * Zero deltas happen more often:
      35             :  *  - on Windows (due to an OS bug),
      36             :  *  - when using monotime_coarse, or on systems with low-resolution timers,
      37             :  *  - on platforms where we emulate monotonic time using wall-clock time, and
      38             :  *  - when using time units that are larger than nanoseconds (due to
      39             :  *    truncation on division).
      40             :  *
      41             :  * Q: Should you use monotime_t or monotime_coarse_t directly? Should you use
      42             :  *    usec? msec? "stamp units?"
      43             :  *
      44             :  * A: Using monotime_t and monotime_coarse_t directly is most time-efficient,
      45             :  * since no conversion needs to happen.  But they can potentially use more
      46             :  * memory than you would need for a usec/msec/"stamp unit" count.
      47             :  *
      48             :  * Converting to usec or msec on some platforms, and working with them in
      49             :  * general, creates a risk of doing a 64-bit division.  64-bit division is
      50             :  * expensive on 32-bit platforms, which still do exist.
      51             :  *
      52             :  * The "stamp unit" type is designed to give a type that is cheap to convert
      53             :  * from monotime_coarse, has resolution of about 1-2ms, and fits nicely in a
      54             :  * 32-bit integer.  Its downside is that it does not correspond directly
      55             :  * to a natural unit of time.
      56             :  *
      57             :  * There is not much point in using "coarse usec" or "coarse nsec", since the
      58             :  * current coarse monotime implementations give you on the order of
      59             :  * milliseconds of precision.
      60             :  *
      61             :  * Q: So, what backends is monotime_coarse using?
      62             :  *
      63             :  * A: Generally speaking, it uses "whatever monotonic-ish time implementation
      64             :  * does not require a context switch."  The various implementations provide
      65             :  * this by having a view of the current time in a read-only memory page that
      66             :  * is updated with a frequency corresponding to the kernel's tick count.
      67             :  *
      68             :  * On Windows, monotime_coarse uses GetCount64() [or GetTickCount() on
      69             :  * obsolete systems].  MSDN claims that the resolution is "typically in the
      70             :  * range of 10-16 msec", but it has said that for years.  Storing
      71             :  * monotime_coarse_t uses 8 bytes.
      72             :  *
      73             :  * On OSX/iOS, monotime_coarse uses uses mach_approximate_time() where
      74             :  * available, and falls back to regular monotime. The precision is not
      75             :  * documented, but the implementation is open-source: it reads from a page
      76             :  * that the kernel updates. Storing monotime_coarse_t uses 8 bytes.
      77             :  *
      78             :  * On unixy systems, monotime_coarse uses clock_gettime() with
      79             :  * CLOCK_MONOTONIC_COARSE where available, and falls back to CLOCK_MONOTONIC.
      80             :  * It typically uses vdso tricks to read from a page that the kernel updates.
      81             :  * Its precision fixed, but you can get it with clock_getres(): on my Linux
      82             :  * desktop, it claims to be 1 msec, but it will depend on the system HZ
      83             :  * setting. Storing monotime_coarse_t uses 16 bytes.
      84             :  *
      85             :  * [TODO: Try CLOCK_MONOTONIC_FAST on foobsd.]
      86             :  *
      87             :  * Q: What backends is regular monotonic time using?
      88             :  *
      89             :  * A: In general, regular monotime uses something that requires a system call.
      90             :  * On platforms where system calls are cheap, you win!  Otherwise, you lose.
      91             :  *
      92             :  * On Windows, monotonic time uses QuereyPerformanceCounter.  Storing
      93             :  * monotime_t costs 8 bytes.
      94             :  *
      95             :  * On OSX/Apple, monotonic time uses mach_absolute_time.  Storing
      96             :  * monotime_t costs 8 bytes.
      97             :  *
      98             :  * On unixy systems, monotonic time uses CLOCK_MONOTONIC.  Storing
      99             :  * monotime_t costs 16 bytes.
     100             :  *
     101             :  * Q: Tell me about the costs of converting to a 64-bit nsec, usec, or msec
     102             :  *    count.
     103             :  *
     104             :  * A: Windows, coarse: Cheap, since it's all multiplication.
     105             :  *
     106             :  * Windows, precise: Expensive on 32-bit: it needs 64-bit division.
     107             :  *
     108             :  * Apple, all: Expensive on 32-bit: it needs 64-bit division.
     109             :  *
     110             :  * Unixy, all: Fairly cheap, since the only division required is dividing
     111             :  * tv_nsec 1000, and nanoseconds-per-second fits in a 32-bit value.
     112             :  *
     113             :  * All, "timestamp units": Cheap everywhere: it never divides.
     114             :  *
     115             :  * Q: This is only somewhat related, but how much precision could I hope for
     116             :  *    from a libevent time?
     117             :  *
     118             :  * A: Actually, it's _very_ related if you're timing in order to have a
     119             :  * timeout happen.
     120             :  *
     121             :  * On Windows, it uses select: you could in theory have a microsecond
     122             :  * resolution, but it usually isn't that accurate.
     123             :  *
     124             :  * On OSX, iOS, and BSD, you have kqueue: You could in theory have a nanosecond
     125             :  * resolution, but it usually isn't that accurate.
     126             :  *
     127             :  * On Linux, you have epoll: It has a millisecond resolution.  Some recent
     128             :  * Libevents can also use timerfd for higher resolution if
     129             :  * EVENT_BASE_FLAG_PRECISE_TIMER is set: Tor doesn't set that flag.
     130             :  */
     131             : 
     132             : #ifndef TOR_COMPAT_TIME_H
     133             : #define TOR_COMPAT_TIME_H
     134             : 
     135             : #include "orconfig.h"
     136             : #include "lib/cc/torint.h"
     137             : 
     138             : #include "lib/wallclock/tor_gettimeofday.h"
     139             : 
     140             : #ifdef _WIN32
     141             : #undef HAVE_CLOCK_GETTIME
     142             : #endif
     143             : 
     144             : #if defined(HAVE_CLOCK_GETTIME)
     145             : /* to ensure definition of CLOCK_MONOTONIC_COARSE if it's there */
     146             : #include <time.h>
     147             : #endif
     148             : 
     149             : #if !defined(HAVE_STRUCT_TIMEVAL_TV_SEC)
     150             : /** Implementation of timeval for platforms that don't have it. */
     151             : struct timeval {
     152             :   time_t tv_sec;
     153             :   unsigned int tv_usec;
     154             : };
     155             : #endif /* !defined(HAVE_STRUCT_TIMEVAL_TV_SEC) */
     156             : 
     157             : /** Represents a monotonic timer in a platform-dependent way. */
     158             : typedef struct monotime_t {
     159             : #ifdef __APPLE__
     160             :   /* On apple, there is a 64-bit counter whose precision we must look up. */
     161             :   uint64_t abstime_;
     162             : #elif defined(HAVE_CLOCK_GETTIME)
     163             :   /* It sure would be nice to use clock_gettime(). Posix is a nice thing. */
     164             :   struct timespec ts_;
     165             : #elif defined (_WIN32)
     166             :   /* On Windows, there is a 64-bit counter whose precision we must look up. */
     167             :   int64_t pcount_;
     168             : #else
     169             : #define MONOTIME_USING_GETTIMEOFDAY
     170             :   /* Otherwise, we will be stuck using gettimeofday. */
     171             :   struct timeval tv_;
     172             : #endif /* defined(__APPLE__) || ... */
     173             : } monotime_t;
     174             : 
     175             : #if defined(CLOCK_MONOTONIC_COARSE) && \
     176             :   defined(HAVE_CLOCK_GETTIME)
     177             : #define MONOTIME_COARSE_FN_IS_DIFFERENT
     178             : #define monotime_coarse_t monotime_t
     179             : #elif defined(_WIN32)
     180             : #define MONOTIME_COARSE_FN_IS_DIFFERENT
     181             : #define MONOTIME_COARSE_TYPE_IS_DIFFERENT
     182             : /** Represents a coarse monotonic time in a platform-independent way. */
     183             : typedef struct monotime_coarse_t {
     184             :   uint64_t tick_count_;
     185             : } monotime_coarse_t;
     186             : #elif defined(__APPLE__) && defined(HAVE_MACH_APPROXIMATE_TIME)
     187             : #define MONOTIME_COARSE_FN_IS_DIFFERENT
     188             : #define monotime_coarse_t monotime_t
     189             : #else
     190             : #define monotime_coarse_t monotime_t
     191             : #endif /* defined(CLOCK_MONOTONIC_COARSE) && ... || ... */
     192             : 
     193             : /**
     194             :  * Initialize the timing subsystem. This function is idempotent.
     195             :  */
     196             : void monotime_init(void);
     197             : /**
     198             :  * Set <b>out</b> to the current time.
     199             :  */
     200             : void monotime_get(monotime_t *out);
     201             : /**
     202             :  * Return the number of nanoseconds between <b>start</b> and <b>end</b>.
     203             :  * The returned value may be equal to zero.
     204             :  */
     205             : int64_t monotime_diff_nsec(const monotime_t *start, const monotime_t *end);
     206             : /**
     207             :  * Return the number of microseconds between <b>start</b> and <b>end</b>.
     208             :  * The returned value may be equal to zero.
     209             :  * Fractional units are truncated, not rounded.
     210             :  */
     211             : int64_t monotime_diff_usec(const monotime_t *start, const monotime_t *end);
     212             : /**
     213             :  * Return the number of milliseconds between <b>start</b> and <b>end</b>.
     214             :  * The returned value may be equal to zero.
     215             :  * Fractional units are truncated, not rounded.
     216             :  */
     217             : int64_t monotime_diff_msec(const monotime_t *start, const monotime_t *end);
     218             : /**
     219             :  * Return the number of nanoseconds since the timer system was initialized.
     220             :  * The returned value may be equal to zero.
     221             :  */
     222             : uint64_t monotime_absolute_nsec(void);
     223             : /**
     224             :  * Return the number of microseconds since the timer system was initialized.
     225             :  * The returned value may be equal to zero.
     226             :  * Fractional units are truncated, not rounded.
     227             :  */
     228             : MOCK_DECL(uint64_t, monotime_absolute_usec,(void));
     229             : /**
     230             :  * Return the number of milliseconds since the timer system was initialized.
     231             :  * The returned value may be equal to zero.
     232             :  * Fractional units are truncated, not rounded.
     233             :  */
     234             : uint64_t monotime_absolute_msec(void);
     235             : 
     236             : /**
     237             :  * Set <b>out</b> to zero.
     238             :  */
     239             : void monotime_zero(monotime_t *out);
     240             : /**
     241             :  * Return true iff <b>out</b> is zero
     242             :  */
     243             : int monotime_is_zero(const monotime_t *out);
     244             : 
     245             : /**
     246             :  * Set <b>out</b> to N milliseconds after <b>val</b>.
     247             :  */
     248             : /* XXXX We should add a more generic function here if we ever need to */
     249             : void monotime_add_msec(monotime_t *out, const monotime_t *val, uint32_t msec);
     250             : 
     251             : #if defined(MONOTIME_COARSE_FN_IS_DIFFERENT)
     252             : /**
     253             :  * Set <b>out</b> to the current coarse time.
     254             :  */
     255             : void monotime_coarse_get(monotime_coarse_t *out);
     256             : /**
     257             :  * Like monotime_absolute_*(), but faster on some platforms.
     258             :  */
     259             : uint64_t monotime_coarse_absolute_nsec(void);
     260             : uint64_t monotime_coarse_absolute_usec(void);
     261             : uint64_t monotime_coarse_absolute_msec(void);
     262             : #else /* !defined(MONOTIME_COARSE_FN_IS_DIFFERENT) */
     263             : #define monotime_coarse_get monotime_get
     264             : #define monotime_coarse_absolute_nsec monotime_absolute_nsec
     265             : #define monotime_coarse_absolute_usec monotime_absolute_usec
     266             : #define monotime_coarse_absolute_msec monotime_absolute_msec
     267             : #endif /* defined(MONOTIME_COARSE_FN_IS_DIFFERENT) */
     268             : 
     269             : /**
     270             :  * Return a "timestamp" approximation for a coarse monotonic timer.
     271             :  * This timestamp is meant to be fast to calculate and easy to
     272             :  * compare, and have a unit of something roughly around 1 msec.
     273             :  *
     274             :  * It will wrap over from time to time.
     275             :  *
     276             :  * It has no defined zero point.
     277             :  */
     278             : uint32_t monotime_coarse_to_stamp(const monotime_coarse_t *t);
     279             : /**
     280             :  * Convert a difference, expressed in the units of monotime_coarse_to_stamp,
     281             :  * into an approximate number of milliseconds.
     282             :  *
     283             :  * The returned value may be equal to zero.
     284             :  * Fractional units are truncated, not rounded.
     285             :  */
     286             : uint64_t monotime_coarse_stamp_units_to_approx_msec(uint64_t units);
     287             : uint64_t monotime_msec_to_approx_coarse_stamp_units(uint64_t msec);
     288             : uint32_t monotime_coarse_get_stamp(void);
     289             : 
     290             : #if defined(MONOTIME_COARSE_TYPE_IS_DIFFERENT)
     291             : /**
     292             :  * Like monotime_diff_*(), but faster on some platforms.
     293             :  */
     294             : int64_t monotime_coarse_diff_nsec(const monotime_coarse_t *start,
     295             :     const monotime_coarse_t *end);
     296             : int64_t monotime_coarse_diff_usec(const monotime_coarse_t *start,
     297             :     const monotime_coarse_t *end);
     298             : int64_t monotime_coarse_diff_msec(const monotime_coarse_t *start,
     299             :     const monotime_coarse_t *end);
     300             : /**
     301             :  * Like monotime_*(), but faster on some platforms.
     302             :  */
     303             : void monotime_coarse_zero(monotime_coarse_t *out);
     304             : int monotime_coarse_is_zero(const monotime_coarse_t *val);
     305             : void monotime_coarse_add_msec(monotime_coarse_t *out,
     306             :                               const monotime_coarse_t *val, uint32_t msec);
     307             : #else /* !defined(MONOTIME_COARSE_TYPE_IS_DIFFERENT) */
     308             : #define monotime_coarse_diff_nsec monotime_diff_nsec
     309             : #define monotime_coarse_diff_usec monotime_diff_usec
     310             : #define monotime_coarse_diff_msec monotime_diff_msec
     311             : #define monotime_coarse_zero monotime_zero
     312             : #define monotime_coarse_is_zero monotime_is_zero
     313             : #define monotime_coarse_add_msec monotime_add_msec
     314             : #endif /* defined(MONOTIME_COARSE_TYPE_IS_DIFFERENT) */
     315             : 
     316             : /**
     317             :  * As monotime_coarse_diff_msec, but avoid 64-bit division.
     318             :  *
     319             :  * Requires that the difference fit into an int32_t; not for use with
     320             :  * large time differences.
     321             :  *
     322             :  * The returned value may be equal to zero.
     323             :  * Fractional units are truncated, not rounded.
     324             :  */
     325             : int32_t monotime_coarse_diff_msec32_(const monotime_coarse_t *start,
     326             :                                      const monotime_coarse_t *end);
     327             : 
     328             : /**
     329             :  * As monotime_coarse_diff_msec, but avoid 64-bit division if it is expensive.
     330             :  *
     331             :  * Requires that the difference fit into an int32_t; not for use with
     332             :  * large time differences.
     333             :  *
     334             :  * The returned value may be equal to zero.
     335             :  * Fractional units are truncated, not rounded.
     336             :  */
     337             : static inline int32_t
     338         224 : monotime_coarse_diff_msec32(const monotime_coarse_t *start,
     339             :                             const monotime_coarse_t *end)
     340             : {
     341             : #if SIZEOF_VOID_P == 8
     342             :   // on a 64-bit platform, let's assume 64/64 division is cheap.
     343         224 :   return (int32_t) monotime_coarse_diff_msec(start, end);
     344             : #else
     345             : #define USING_32BIT_MSEC_HACK
     346             :   return monotime_coarse_diff_msec32_(start, end);
     347             : #endif /* SIZEOF_VOID_P == 8 */
     348             : }
     349             : 
     350             : #ifdef TOR_UNIT_TESTS
     351             : void tor_sleep_msec(int msec);
     352             : 
     353             : void monotime_enable_test_mocking(void);
     354             : void monotime_disable_test_mocking(void);
     355             : void monotime_set_mock_time_nsec(int64_t);
     356             : #if defined(MONOTIME_COARSE_FN_IS_DIFFERENT)
     357             : void monotime_coarse_set_mock_time_nsec(int64_t);
     358             : #else
     359             : #define monotime_coarse_set_mock_time_nsec monotime_set_mock_time_nsec
     360             : #endif
     361             : #endif /* defined(TOR_UNIT_TESTS) */
     362             : 
     363             : #ifdef COMPAT_TIME_PRIVATE
     364             : #if defined(_WIN32) || defined(TOR_UNIT_TESTS)
     365             : STATIC int64_t ratchet_performance_counter(int64_t count_raw);
     366             : STATIC int64_t ratchet_coarse_performance_counter(int64_t count_raw);
     367             : #endif
     368             : #if defined(MONOTIME_USING_GETTIMEOFDAY) || defined(TOR_UNIT_TESTS)
     369             : STATIC void ratchet_timeval(const struct timeval *timeval_raw,
     370             :                             struct timeval *out);
     371             : #endif
     372             : #ifdef TOR_UNIT_TESTS
     373             : void monotime_reset_ratchets_for_testing(void);
     374             : #endif
     375             : #endif /* defined(COMPAT_TIME_PRIVATE) */
     376             : 
     377             : #endif /* !defined(TOR_COMPAT_TIME_H) */

Generated by: LCOV version 1.14