Line data Source code
1 : /* Copyright 2001-2004 Roger Dingledine.
2 : * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
3 : * Copyright (c) 2007-2021, The Tor Project, Inc. */
4 : /* See LICENSE for licensing information */
5 :
6 : #define CRYPT_PATH_PRIVATE
7 :
8 : #include "core/or/or.h"
9 : #include "core/or/circuitbuild.h"
10 : #define CIRCUITLIST_PRIVATE
11 : #include "core/or/circuitlist.h"
12 : #include "lib/crypt_ops/crypto_rand.h"
13 : #include "core/or/relay.h"
14 : #include "core/crypto/relay_crypto.h"
15 : #include "core/or/crypt_path.h"
16 : #include "core/or/cell_st.h"
17 : #include "core/or/or_circuit_st.h"
18 : #include "core/or/origin_circuit_st.h"
19 :
20 : #include "test/test.h"
21 :
22 : static const char KEY_MATERIAL[3][CPATH_KEY_MATERIAL_LEN] = {
23 : " 'My public key is in this signed x509 object', said Tom assertively.",
24 : "'Let's chart the pedal phlanges in the tomb', said Tom cryptographically",
25 : " 'Segmentation fault bugs don't _just happen_', said Tom seethingly.",
26 : };
27 :
28 : typedef struct testing_circuitset_t {
29 : or_circuit_t *or_circ[3];
30 : origin_circuit_t *origin_circ;
31 : } testing_circuitset_t;
32 :
33 : static int testing_circuitset_teardown(const struct testcase_t *testcase,
34 : void *ptr);
35 :
36 : static void *
37 2 : testing_circuitset_setup(const struct testcase_t *testcase)
38 : {
39 2 : testing_circuitset_t *cs = tor_malloc_zero(sizeof(testing_circuitset_t));
40 2 : int i;
41 :
42 10 : for (i=0; i<3; ++i) {
43 6 : cs->or_circ[i] = or_circuit_new(0, NULL);
44 6 : tt_int_op(0, OP_EQ,
45 : relay_crypto_init(&cs->or_circ[i]->crypto,
46 : KEY_MATERIAL[i], sizeof(KEY_MATERIAL[i]),
47 : 0, 0));
48 : }
49 :
50 2 : cs->origin_circ = origin_circuit_new();
51 2 : cs->origin_circ->base_.purpose = CIRCUIT_PURPOSE_C_GENERAL;
52 8 : for (i=0; i<3; ++i) {
53 6 : crypt_path_t *hop = tor_malloc_zero(sizeof(*hop));
54 6 : relay_crypto_init(&hop->pvt_crypto, KEY_MATERIAL[i],
55 : sizeof(KEY_MATERIAL[i]), 0, 0);
56 6 : hop->state = CPATH_STATE_OPEN;
57 6 : cpath_extend_linked_list(&cs->origin_circ->cpath, hop);
58 6 : tt_ptr_op(hop, OP_EQ, cs->origin_circ->cpath->prev);
59 : }
60 :
61 : return cs;
62 0 : done:
63 0 : testing_circuitset_teardown(testcase, cs);
64 0 : return NULL;
65 : }
66 :
67 : static int
68 2 : testing_circuitset_teardown(const struct testcase_t *testcase, void *ptr)
69 : {
70 2 : (void)testcase;
71 2 : testing_circuitset_t *cs = ptr;
72 2 : int i;
73 8 : for (i=0; i<3; ++i) {
74 6 : circuit_free_(TO_CIRCUIT(cs->or_circ[i]));
75 : }
76 2 : circuit_free_(TO_CIRCUIT(cs->origin_circ));
77 2 : tor_free(cs);
78 2 : return 1;
79 : }
80 :
81 : static const struct testcase_setup_t relaycrypt_setup = {
82 : testing_circuitset_setup, testing_circuitset_teardown
83 : };
84 :
85 : /* Test encrypting a cell to the final hop on a circuit, decrypting it
86 : * at each hop, and recognizing it at the other end. Then do it again
87 : * and again as the state evolves. */
88 : static void
89 1 : test_relaycrypt_outbound(void *arg)
90 : {
91 1 : testing_circuitset_t *cs = arg;
92 1 : tt_assert(cs);
93 :
94 : relay_header_t rh;
95 : cell_t orig;
96 : cell_t encrypted;
97 : int i, j;
98 :
99 51 : for (i = 0; i < 50; ++i) {
100 50 : crypto_rand((char *)&orig, sizeof(orig));
101 :
102 50 : relay_header_unpack(&rh, orig.payload);
103 50 : rh.recognized = 0;
104 50 : memset(rh.integrity, 0, sizeof(rh.integrity));
105 50 : relay_header_pack(orig.payload, &rh);
106 :
107 50 : memcpy(&encrypted, &orig, sizeof(orig));
108 :
109 : /* Encrypt the cell to the last hop */
110 50 : relay_encrypt_cell_outbound(&encrypted, cs->origin_circ,
111 50 : cs->origin_circ->cpath->prev);
112 :
113 250 : for (j = 0; j < 3; ++j) {
114 150 : crypt_path_t *layer_hint = NULL;
115 150 : char recognized = 0;
116 150 : int r = relay_decrypt_cell(TO_CIRCUIT(cs->or_circ[j]),
117 : &encrypted,
118 : CELL_DIRECTION_OUT,
119 : &layer_hint, &recognized);
120 150 : tt_int_op(r, OP_EQ, 0);
121 150 : tt_ptr_op(layer_hint, OP_EQ, NULL);
122 150 : tt_int_op(recognized != 0, OP_EQ, j == 2);
123 : }
124 :
125 50 : tt_mem_op(orig.payload, OP_EQ, encrypted.payload, CELL_PAYLOAD_SIZE);
126 : }
127 :
128 1 : done:
129 1 : ;
130 1 : }
131 :
132 : /* As above, but simulate inbound cells from the last hop. */
133 : static void
134 1 : test_relaycrypt_inbound(void *arg)
135 : {
136 1 : testing_circuitset_t *cs = arg;
137 1 : tt_assert(cs);
138 :
139 : relay_header_t rh;
140 : cell_t orig;
141 : cell_t encrypted;
142 : int i, j;
143 :
144 51 : for (i = 0; i < 50; ++i) {
145 50 : crypto_rand((char *)&orig, sizeof(orig));
146 :
147 50 : relay_header_unpack(&rh, orig.payload);
148 50 : rh.recognized = 0;
149 50 : memset(rh.integrity, 0, sizeof(rh.integrity));
150 50 : relay_header_pack(orig.payload, &rh);
151 :
152 50 : memcpy(&encrypted, &orig, sizeof(orig));
153 :
154 : /* Encrypt the cell to the last hop */
155 50 : relay_encrypt_cell_inbound(&encrypted, cs->or_circ[2]);
156 :
157 50 : crypt_path_t *layer_hint = NULL;
158 50 : char recognized = 0;
159 50 : int r;
160 150 : for (j = 1; j >= 0; --j) {
161 100 : r = relay_decrypt_cell(TO_CIRCUIT(cs->or_circ[j]),
162 : &encrypted,
163 : CELL_DIRECTION_IN,
164 : &layer_hint, &recognized);
165 100 : tt_int_op(r, OP_EQ, 0);
166 100 : tt_ptr_op(layer_hint, OP_EQ, NULL);
167 100 : tt_int_op(recognized, OP_EQ, 0);
168 : }
169 :
170 50 : relay_decrypt_cell(TO_CIRCUIT(cs->origin_circ),
171 : &encrypted,
172 : CELL_DIRECTION_IN,
173 : &layer_hint, &recognized);
174 50 : tt_int_op(r, OP_EQ, 0);
175 50 : tt_int_op(recognized, OP_EQ, 1);
176 50 : tt_ptr_op(layer_hint, OP_EQ, cs->origin_circ->cpath->prev);
177 :
178 50 : tt_mem_op(orig.payload, OP_EQ, encrypted.payload, CELL_PAYLOAD_SIZE);
179 : }
180 1 : done:
181 1 : ;
182 1 : }
183 :
184 : #define TEST(name) \
185 : { # name, test_relaycrypt_ ## name, 0, &relaycrypt_setup, NULL }
186 :
187 : struct testcase_t relaycrypt_tests[] = {
188 : TEST(outbound),
189 : TEST(inbound),
190 : END_OF_TESTCASES
191 : };
192 :
|